GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 1096-1096
    Abstract: We sought to determine the differences in molecular response between early and late CP pts with CML who achieved a CCR after treatment with IM at the standard dose of 400mg/d. We studied 2 different cohorts of patients in CCR: 67/191 (35%) pts after α-Interferon (α-IFN) failure enrolled on the CML/002/STI571 protocol 53/76 (70%) pts treated front line with a combination of IM and pegilated IFN-α (PEG-IFN) enrolled on the CML/011/STI571 protocol Cytogenetic response was monitored on bone marrow (BM) metaphases and molecular response was assessed by real time RT-PCR (TaqMan) BM and peripheral blood (PB) samples, collected at baseline, 3, 6, 9 and 12 months during the first year, and every 6 months thereafter. Molecular response was expressed as the ratio between BCR/ABL and β2-microglobulin (β2-M) x100. The lowest level of detectability of the method was 10−5. Negative results (i.e. undetectable transcript) were confirmed by nested PCR performed 4 times (sensitivity 10−6). For the purpose of this analysis, a major molecular response (MMR) was defined as a BCR-ABL/β2M value & lt;0.0001%, which turned out to be roughly equivalent to a 3-log reduction and a complete molecular response (CMR) was defined as negative (undetectable) BCR/ABL levels confirmed by nested PCR. We observed a progressive decrease of the amount of BCR/ABL transcript in pts who achieved a CCR. At 24 months the median reduction in BCR/ABL transcript level was: a 3-log reduction in late CP pts a 4-log reduction in early CP pts In the latter group of pts MR was assessed also at 36 months. So we observed that 36 months after the first dose of IM and PEG-IFN pts who were still in CCR had the median value of BCR/ABL transcript of 0.00001% both in BM and PB. Therefore all these pts achieved a MMR. However only 8/53 (4%) pts were in CMR (undetectable BCR/ABL at least once as assessed by nested PCR). We conclude that front-line treatment with IM results in a better quality MR (4-log reduction in BCR/ABL transcript levels in early CP pts, as against a 3-log reduction in late CP pts). Figure Figure
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Leukemia Research, Elsevier BV, Vol. 35, No. 11 ( 2011-11), p. 1527-1529
    Type of Medium: Online Resource
    ISSN: 0145-2126
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2008028-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 24, No. 33 ( 2006-11-20), p. e51-e52
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2006
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3840-3840
    Abstract: Aneuploidy causes a proliferative disadvantage, mitotic and proteotoxic stress in non-malignant cells ( Torres et al. Science 2007). Chromosome gain or loss, which is the hallmark of aneuploidy, is a relatively common event in Acute Myeloid Leukemia (AML). About 10% of adult AML display isolated trisomy 8, 11, 13, 21 (Farag et al. IJO 2002), or either an isolated autosomal monosomy or monosomal karyotype (Breems et al. JCO 2008). This evidence suggests that tumor-specific mechanisms cooperate to overcome the unfitness barrier and maintain aneuploidy. However, the molecular bases of aneuploid AML are incompletely understood. We analyzed a cohort of 166 cytogenetically-characterized AML patients (80 aneuploid (A-) and 86 euploid (E-)) treated at Seràgnoli Institute (Bologna). Aneuploidy was significantly associated with poor overall survival (median survival: 13 and 26 months in A-AML and E-AML respectively; p=.006, Fig.1). To identify AML-specific alterations having a causative and/or tolerogenic role towards aneuploidy, we integrated high-throughput genomic and transcriptomic analyses. We performed 100 bp paired-end whole exome sequencing (WES, Illumina Hiseq2000) of 70 samples from our A-AML and E-AML cohort of 166 patients. Variants where called with MuTect or GATK for single nucleotide variant and indels detection, respectively. AML samples were genotyped by CytoScan HD Array (Affymetrix). Gene expression profiling (GEP) was also conducted on bone marrow cells from 24 A-AML, 33 E-AML (≥80% blasts) and 7 healthy controls (HTA 2.0, Affymetrix). We detected a significantly higher mutation load in A-AML compared with E-AML (median number of variants: 31 and 15, p=.04) which was interestingly unrelated to patients' age (median age: 63.5 years in A-AML and 62 years in E-AML, Xie et al, Nat. Med. 2014). C 〉 A and C 〉 T substitutions, which are likely mediated by endogenous 5mCdeamination, were the most frequent alterations (Alexandrov et al. Nat. 2013). However, aneuploidy associated with an increased variability in terms of mutational signatures, with the majority of A-AML displaying 3 or more signatures compared to few E-AML cases (p=.04). WES analysis also revealed a specific pattern of somatic mutations in A-AML. A-AML had a lower number of mutations in signaling genes (p=.04), while being enriched for alterations in cell cycle genes (p=.01) compared with E-AML. The mutated genes were involved in different cell cycle phases, including DNA replication (MCM6, PURB, SSRP1), centrosome dynamics (CEP250, SAC3D1, HEPACAM2, CCP110), chromosome segregation (NUSAP1, ESPL1, TRIOBP), mitotic checkpoint (ANAPC7, FAM64A) and regulation (CDK9, MELK, ZBTB17, FOXN3, PPM1D, USP2). Moreover, genomic deletion of cell cycle-related genes was frequently detected in A-AML. Notably, ESPL1 which associated with aneuploidy, chromosome instability and DNA damage in mammary tumors (Mukherjee et al. Oncogene 2014) was mutated and also upregulated in A-AML compared with E-AML (p=.01), the latter showing expression levels comparable to controls. Among the top-ranked genes differentially expressed between A-AML and E-AML, we identified a specific signature characterized by increased CDC20 and UBE2C and reduced RAD50 and ATR in A-AML (p 〈 .001), which has been previously linked to defects in chromosome number. Additional mutations targeting DNA damage and repair pathways were identified in A-AML, including TP53 mutations, which account for 15% of cases. Moreover, A-AML showed a significant upregulation of a KRAS transcriptional signature and downregulation of FANCL- and TP53-related signatures, irrespective of TP53 mutational status. Our data show a link between aneuploidy and genomic instability in AML. Deregulation of the cell cycle machinery, DNA damage and repair checkpoints either through mutations, copy number and transcriptomic alterations is a hallmark of A-AML. The results define specific genomic and transcriptomic signatures that cooperate with leukemogenic pathways, as KRAS signaling, to the development of the aggressive phenotype of A-AML and suggest that a number of A-AML patients may benefit frompharmacological reactivation of TP53pathway (e.g. MDM2 inhibitor, clinical trial NP28679). Supported by: FP7 NGS-PTL project, ELN, AIL, AIRC, PRIN, progetto Regione-Università 2010-12 GS & AP: equal contribution Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Cavo:JANSSEN, CELGENE, AMGEN: Consultancy. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Martinelli:MSD: Consultancy; BMS: Speakers Bureau; Roche: Consultancy; ARIAD: Consultancy; Novartis: Speakers Bureau; Pfizer: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Neuroradiology, Springer Science and Business Media LLC, Vol. 31, No. 1 ( 2021-03), p. 21-29
    Type of Medium: Online Resource
    ISSN: 1869-1439 , 1869-1447
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2232347-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 113, No. 15 ( 2009-04-09), p. 3428-3434
    Abstract: Imatinib mesylate has become the treatment of choice for chronic myeloid leukemia (CML): the standard dose for chronic- phase (CP) CML is 400 mg daily. Response rates are different according to Sokal score, being significantly lower in intermediate and high Sokal risk patients. Phase 1 and 2 trials have shown a dose-response effect and high-dose imatinib trials in early CP CML showed better results compared with standard dose. Our study is the first prospective trial planned to evaluate the efficacy and tolerability of high-dose imatinib in previously untreated intermediate Sokal risk CML patients. Seventy-eight patients were treated with 400 mg imatinib twice daily: complete cytogenetic response (CCgR) rates at 12 and 24 months were 88% and 91%; moreover, at 12 and 24 months 56% and 73% of CCgR patients achieved a major molecular response. The incidence of adverse events was slightly higher than reported by the most important standard-dose trials. With a median follow-up of 24 months, 3 patients progressed to advanced phase. In intermediate Sokal risk newly diagnosed CML patients, high-dose imatinib induced rapid and high response rates, apparently faster than those documented in the International Randomized Study of IFN and Imatinib for the same risk category. These clinical trials are registered at www.clinicaltrials.gov as no. NCT00510926.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 4805-4805
    Abstract: To assess the effect of age on response and compliance we performed a sub-analysis within a phase II trial of the GIMEMA CMLWorking Party (CML/002/STI571). Since the WHO cut-off age to define an older patient is 65 years, we identified: 226/284 (80%) younger patients (below 65 years) and 58/284 (20%) older patients (above 65 years) before starting imatinib. Responses (hematologic and cytogenetic) were lower in older age group but progression free survival and overall survival probabilities (median observation time 3 years) were the same. Moreover, among complete cytogenetic responders, no differences were found in the level of molecular response between the 2 age groups. As probably expected, older patients experienced more adverse events (AEs), both hematologic and non-hematologic: this worsen compliance, however, did not prevent a long term outcome similar to younger ones. CML
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 2174-2174
    Abstract: Abstract 2174 Poster Board II-151 Chronic Myeloid Leukemia (CML) is a clonal myeloproliferative disease which typically presents in chronic phase (CP), whose malignant progenitor cells proliferate rapidly, still retaining their ability to differentiate. If left untreated the disease can rapidly progress to accelerated phase and blast crisis. Although the treatment has been dramatically improved with introduction of Glivec therapy, the use of the Sokal and the Euro prognostic scores has remained an essential clinical tool to stratify CML patients at diagnosis based on different evolutive risk and to guide treatment decisions. To further optimize the management of the disease it is critical to gain a better understanding of regulatory pathways involved in the intrinsic heterogeneity of CML and propensity to progress. To that end our effort has been focused on identifying a molecular signature associated with a risk of the disease progression. Here we present data obtained from our study of gene expression profiles (GEP) aimed at identifying genes and pathways which could predict the disease course of CP-CML patients at the onset of the disease. The study was performed on highly enriched CD34+ cells from peripheral blood obtained from patients with untreated CML in CP. GEP was performed by using the Affymetrix HG-U133 Plus 2.0 platform. Raw data were normalized by using the RMA algorithm and filtered. Genes associated with Sokal risk score were selected by a moderate t-statistic (Limma package, p-value threshold = 0.01). Hierarchical clustering was performed with TIGR MeV. Overall, 34 pts were included in the present analysis. In the initial part of the study, the first 20 pts (the “training set”) were successfully assayed for global GEP and microarray data and were used to define a set of genes differentially expressed in high (H) (7 pts) vs. low (L) (13 pts) Sokal risk pts. We identified 84 probes sets and the clustering of their GEP showed an homogeneous pattern in H Sokal risk pts, where the most significantly involved process networks (as defined by GeneGo software) were: “Cell adhesion_Histamine H1 receptor signaling in the interruption of cell barrier integrity” (PLCB1, CALM1, PRKCA, PPPIR14A, MYL4), “Cytoskeleton remodeling_TGF and WNT” (ACTN1, CFL2, TCF7L2) and “Development_WNT signaling pathway” (WNT6, FZD3, TCF4, VEGF-A). Of interest, among the most significantly up-regulated genes, we identified PVT1, a non-coding gene located on chromosome 8, close to c-Myc gene, which encodes for several miRNA able to activate c-Myc gene transcription. Among the most significantly down-regulated genes is PLCB1, which we have recently described as being deleted in myelodysplastic syndromes and in acute myeloid leukemia. In the second part of the study, the 84 probes set were tested on an independent test set of 14 pts, including 4 H, and 10 L Sokal risk pts., thus showing that the GEP clustering displayed the same feature which we have observed in the training set. In conclusion, our study has identified a distinct array of genes at diagnosis which might be involved in driving the evolutive risk of CML and potentially, this approach could be of value to better define patients who may need an optimized treatment. Supported by:Novartis Oncology, TOPS Correlative Studies, PRIN, AIRC, AIL, FIRB 2006, Fondazione del Monte di Bologna e Ravenna. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 3262-3262
    Abstract: Abstract 3262 Poster Board III-1 CML pts display a certain degree of clinical heterogeneity that is documented by the varying levels of response to tyrosine kinase inhibitor therapy and is best reflected by the Sokal risk score. Clinical differences must be a sign of some biological heterogeneity the basis of which, however, are still poorly understood. Today many high-throughput assays are available that allow to unravel the complexity of cancer cells in a genome-wide fashion. We have used Human 6.0 SNP Arrays (Affymetrix) to perform high-resolution ( 〈 1 kb) karyotyping of DNA samples from 73 newly diagnosed chronic phase CML pts. Median age was 55 years (range, 25–73 years); male to female ratio was 39/34; pts were almost equally distributed by Sokal risk score (low, n=23; intermediate, n= 23 high, n= 27). Of 189 genes known to be implicated in the cellular DNA repair pathways, 135 (71%) were found to map in regions affected by CNAs or copy-neutral LOH (uniparental disomy, UPD) in 44/73 (60%) pts. However, this was markedly more frequent in high and intermediate Sokal risk pts (20/27, 74% and 16/23, 69%, respectively) than in low Sokal risk pts (8/23, 33%), although neither the total number of detected regions of CNAs/UPD per sample nor the QC parameters differ significantly across different risk categories. Regions of CNA involving DNA repair genes ranged from 105 Kb to 1.1 Mb and were either focal lesions involving a part or the whole single gene (17% of cases), or more extensive losses/gains including 2 to 84 genes. Monoallelic deletions were much more frequent than amplifications. Regions of UPD involving DNA repair genes were much larger and ranged from 980 kb to 32 Mb. The pathways and genes most frequently affected by CNAs or UPD are listed in the Table below: Base Excision Repair (BER) MUTYH DNA glycosilase 1p34.1 loss/upd 10 pts PNKP Polynucleotide kinase 19q13.33 loss 10 pts NEIL1 DNA glycosilase 15q24.2 loss 7 pts POLB DNA polymerase beta 8p11.21 loss/upd 6 pts PCNA Sliding clamp for DNA polymerases 20p12.3 loss 6 pts Mismatch Repair (MMR) PMS2L5 Mut L homolog - mismatch and loop recognition 7q11.23 loss/upd 11 pts MSH2 Mut S homolog - mismatch and loop recognition 2p21 loss 8 pts POLD1 DNA polymerase delta 19q13.33 loss 8 pts POLA2 DNA polymerase alpha, subunit 2 2p16.3 loss/upd 6 pts POLE2 DNA polymerase epsilon, subunit 2 14q21–22 loss 5 pts Nucleotide Excision Repair (NER) ERCC1 5’ incision subunit of TFIIH complex 19q13.32 loss 11 pts ERCC2 5’ to 3’DNA helicase of TFIIH complex 19q13.32 loss 10 pts XAB2 Transcription-coupled NER factor 19p13.2 loss/upd 9 pts CDK7 Kinase subunit of TFIIH complex 5q13.2 loss 7 pts RPA4 Binds damaged DNA in preincision complexes Xp21.33 loss/upd 7 pts RPA2 Binds damaged DNA in preincision complexes 12q24.31 loss/upd 6 pts Homologous Recombination (HR) RAD51C Homologous pairing 17q23.2 loss/upd 7 pts RAD52 Accessory factor for recombination 12p13.33 loss 7 pts XRCC2 DNA break and crosslink repair 7q36.1 loss 5 pts Non-Homologous End Joining (NHEJ) PRKDC DNA-dependent protein kinase, catalytic subunit 8q11.21 loss/upd 5 pts DCLRE1C Artemis nuclease 10p13 loss 5 pts REV7 DNA polymerase zeta, subunit 1p36.22 gain 5 pts Other genes involved in DNA replication/repair/modification or chromatin remodeling CHAF1A Chromatin assembly factor 19p13.3 loss 15 pts RECQL5 DNA helicase 17q25.1 loss/upd 11 pts RAD9B PCNA-like DNA damage sensor 12q24.11 loss/upd 10 pts CHEK2 DNA-damage checkpoint 22q12.1 loss/upd 8 pts RAD17 RFC-like DNA damage sensor 5q13.2 loss 6 pts TREX1 DNAase III exonuclease 3p12.31 loss/upd 6 pts For some genes (e.g., RAD52), the monoallelic deletion we detected was found to translate into reduced mRNA expression, observation that was also independently confirmed in an additional group of high/intermediate versus low Sokal risk pts. In all the 44 pts, multiple pathways and multiple genes within the same pathway were affected, supporting the hypothesis that the lesions we detected might actually have consequences on DNA integrity despite the known partial functional redundancy of pathways and effectors. For many of the genes identified in this screen, activating or inactivating mutations are known to occur, and together with overexpression or haploinsufficiency, have been linked to a mutator phenotype in several malignant conditions. We are currently investigating whether this may be the case also in CML. Supported by European LeukemiaNet, AIL, AIRC, PRIN, Fondazione del Monte di Bologna e Ravenna. Disclosures: Baccarani: Novartis: Honoraria, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Research Funding, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 836-836
    Abstract: Dasatinib (BMS-354825) is a second-generation BCR-ABL inhibitor active against several imatinib-insensitive BCR-ABL mutant forms. We have treated in the phase II program with dasatinib a total of forty-five Ph+ pts who were resistant to or intolerant of imatinib. At the time of writing, twenty pts have failed to respond to or relapsed on dasatinib therapy. In order to assess which pre-existent or emerging ABL kinase domain (KD) mutations are challenging for dasatinib clinical efficacy, we retrospectively analyzed ABL KD sequences before the start of treatment and every month thereafter, until dasatinib discontinuation. Mutation monitoring was done by D-HPLC, followed by sequencing in D-HPLC-positive cases. Eight pts had primary resistance to dasatinib (Table 1). In all cases, a T315I or a F317L mutation was already detectable before the onset of treatment or became detectable after one month. The mutations persisted up to the time of disease progression, which occurred at a median of 1.5 months (range, 1–4) from dasatinib start. Twelve pts had acquired resistance to dasatinib (Table 1). Relapse occurred after a median of 7.5 months (range, 3–15) from dasatinib start. Mutation analysis performed before the onset of treatment showed that five of these pts had a wild-type ABL sequence, while the remaining seven pts had evidence of various imatinib-resistant KD mutations (G250E, Y253H, E255K, D276G, M351T). At the time of relapse, however, most of the original mutant clones had disappeared, whereas mutations at residues 315 (T315I or T315A) and/or 317 (F317L or F317I) had invariably emerged in all but one pt. This pt was found to have developed a novel K356R mutation which is now under characterization. Our results indicate that residues 315 and 317 are mutation hotspots in dasatinib-resistant pts, according to the experimental observation that they are both involved in inhibitor binding. They also provide a proof of principle that novel, inhibitor-specific mutant variants (i.e., T315A, F317I, K356R) may be selected, and raise some concerns about the limitations of single-agent treatment in the long term disease control of advanced phase-CML or Ph+ ALL pts. Supported by European LeukemiaNet, AIL, AIRC, FIRB and PRIN projects. Table 1 Pt Disease Mutation(s) before dasatinib start Best HR Best CgR Months on dasatinib Mutation(s) at relapse NE, not evaluated Primary resistance 1 CML/AP WT NR none 4 T315I 2 CML/AP T315I NR NE 1 T315I 3 CML/myBC T315I NR NE 1 T315I 4 CML/myBC F317L NR none 3 F317L 5 CML/lyBC T315I NR NE 1 T315I 6 Ph+ ALL T315I, M351T, L387M NR NE 2 T315I, M351T, L387M 7 Ph+ ALL T315I NR NE 1 T315I 8 Ph+ ALL F359V NR NE 2 T315I Acquired resistance 9 CP WT CHR minor 15 T315I 10 CML/myBC G250E NEL none 8 F317L 11 CML/lyBC Y253H CHR complete 9 CHR T315I 12 CML/lyBC WT CHR complete 4 T315I 13 CML/lyBC E255K CHR none 3 E255K, T315I 14 CML/lyBC D276G CHR complete 7 T315I 15 CML/lyBC WT CHR partial 9 F317L 16 Ph+ ALL E255K CHR NE 4 T315I 17 Ph+ ALL Y253H CHR complete 13 T315A, F317L, D276G 18 Ph+ ALL M351T CHR complete 13 M351T, F317L 19 Ph+ ALL WT CHR complete 6 F317I 20 Ph+ ALL WT CHR complete 4 K356R
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...