GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 1981
    In:  Cellular Immunology Vol. 63, No. 1 ( 1981-09), p. 91-105
    In: Cellular Immunology, Elsevier BV, Vol. 63, No. 1 ( 1981-09), p. 91-105
    Type of Medium: Online Resource
    ISSN: 0008-8749
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1981
    detail.hit.zdb_id: 1462601-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of General Virology, Microbiology Society, Vol. 85, No. 10 ( 2004-10-01), p. 2767-2778
    Abstract: Epstein–Barr virus (EBV) is a ubiquitous human herpesvirus that is involved in the pathogenesis of a wide spectrum of malignant and non-malignant diseases. Strong evidence implicates T lymphocytes in the control of EBV replication and tumorigenesis, but cellular components of the innate immune system are poorly characterized in terms of their function in the development of EBV-specific immunity or interaction with the virus. This study demonstrates that EBV virions produced in epithelial cells surpass their B cell-derived counterparts in the capacity to enter monocytes and inhibit their development into dendritic cells (DCs). Different ratios of the gp42 and gH glycoproteins in the envelope of virions that were derived from major histocompatibility complex class II-positive or -negative cells accounted primarily for the differences in EBV tropism. EBV is shown to enter both monocytes and DCs, although the cells are susceptible to virus-induced apoptosis only if infected at early stages of DC differentiation. The purified gH/gL heterodimer binds efficiently to monocytes and DCs, but not to B cells, suggesting that high expression levels of a putative binding partner for gH contribute to virus entry. This entry takes place despite very low or undetectable expression of CD21, the canonical EBV receptor. These results indicate that the site of virus replication, either in B cells or epithelial cells, alters EBV tropism for monocytes and DCs. This results in a change in the virus's immunomodulating capacity and may have important implications for the regulation of virus–host interactions during primary and chronic EBV infection.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2004
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Microbiology Society ; 2007
    In:  Journal of General Virology Vol. 88, No. 8 ( 2007-08-01), p. 2129-2136
    In: Journal of General Virology, Microbiology Society, Vol. 88, No. 8 ( 2007-08-01), p. 2129-2136
    Abstract: Glycoprotein gH, together with its chaperone gL and a third glycoprotein gB, is essential for cell–cell fusion and virus–cell fusion mediated by herpesviruses. Epstein–Barr virus (EBV), the prototype human lymphocryptovirus, requires a fourth glycoprotein gp42 to support fusion with B cells in addition to epithelial cells. Two other lymphocryptoviruses, the rhesus lymphocryptovirus (Rh-LCV) and the common marmoset lymphocryptovirus (CalHV3), have been sequenced in their entirety and each has a gp42 homologue. Combinations of proteins from EBV, Rh-LCV and CalHV3 were able to mediate fusion of epithelial cells, but, even when complexed with EBV gp42, only Rh-LCV and not CalHV3 proteins were able to mediate fusion with human B cells. CalHV3 gL was also unable to function effectively as a chaperone for EBV or Rh-LCV gH. The Rh-LCV gH homologue supported more fusion than EBV gH with an epithelial cell and supported the highest levels of fusion with a B cell. Chimeric constructs made from Rh-LCV gH and EBV gH that have 85.4 % sequence identity should prove useful for mapping the regions of gH that are of importance to fusion as a whole and to B-cell fusion in particular.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2007
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 1998
    In:  Journal of Virology Vol. 72, No. 1 ( 1998-01), p. 158-163
    In: Journal of Virology, American Society for Microbiology, Vol. 72, No. 1 ( 1998-01), p. 158-163
    Abstract: The Epstein-Barr virus gH-gL complex includes a third glycoprotein, gp42, which is the product of the BZLF2 open reading frame (ORF). gp42 has been implicated as critical to infection of the B lymphocyte by virtue of its interaction with HLA class II on the B-cell surface. A neutralizing antibody that reacts with gp42 inhibits virus-cell fusion and blocks binding of gp42 to HLA class II; antibody to HLA class II can inhibit infection, and B cells that lack HLA class II can only be infected if HLA class II expression is restored. To confirm whether gp42 is an essential component of the virion, we derived a recombinant virus with a selectable marker inserted into the BZLF2 ORF to interrupt expression of the protein. A complex of gH and gL was expressed by the recombinant virus in the absence of gp42. Recombinant virus egressed from the cell normally and could bind to receptor-positive cells. It had, however, lost the ability to infect or transform B lymphocytes. Treatment with polyethylene glycol restored the infectivity of recombinant virus, confirming that gp42 is essential for penetration of the B-cell membrane.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 1998
    In:  Journal of Virology Vol. 72, No. 7 ( 1998-07), p. 5552-5558
    In: Journal of Virology, American Society for Microbiology, Vol. 72, No. 7 ( 1998-07), p. 5552-5558
    Abstract: The Epstein-Barr virus (EBV) gH-gL complex includes a third glycoprotein, gp42. gp42 binds to HLA class II on the surfaces of B lymphocytes, and this interaction is essential for infection of the B cell. We report here that, in contrast, gp42 is dispensable for infection of epithelial cell line SVKCR2. A soluble form of gp42, gp42.Fc, can, however, inhibit infection of both cell types. Soluble gp42 can interact with EBV gH and gL and can rescue the ability of virus lacking gp42 to transform B cells, suggesting that a gH-gL-gp42.Fc complex can be formed by extrinsic addition of the soluble protein. Truncated forms of gp42.Fc that retain the ability to bind HLA class II but that cannot interact with gH and gL still inhibit B-cell infection by wild-type virus but cannot inhibit infection of SVKCR2 cells or rescue the ability of recombinant gp42-negative virus to transform B cells. An analysis of wild-type virions indicates the presence of more gH and gL than gp42. To explain these results, we describe a model in which wild-type EBV virions are proposed to contain two types of gH-gL complexes, one that includes gp42 and one that does not. We further propose that these two forms of the complex have mutually exclusive abilities to mediate the infection of B cells and epithelial cells. Conversion of one to the other concurrently alters the ability of virus to infect each cell type. The model also suggests that epithelial cells may express a molecule that serves the same cofactor function for this cell type as HLA class II does for B cells and that the gH-gL complex interacts directly with this putative epithelial cofactor.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2017
    In:  Journal of Virology Vol. 91, No. 1 ( 2017-01)
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 1 ( 2017-01)
    Abstract: The roles of epithelial cells in infection and persistence of the Epstein-Barr virus (EBV) have long been difficult to resolve. However, recent developments have reinforced the conclusion that these cells are a major site of virus replication and raised the possibility that, like papillomaviruses, EBV has evolved to take advantage of epithelial differentiation to ensure survival, persistence, and spread.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 1998
    In:  Journal of Virology Vol. 72, No. 9 ( 1998-09), p. 7577-7582
    In: Journal of Virology, American Society for Microbiology, Vol. 72, No. 9 ( 1998-09), p. 7577-7582
    Abstract: Glycoprotein gp150 is a highly glycosylated protein encoded by the BDLF3 open reading frame of Epstein-Barr virus (EBV). It does not have a homolog in the alpha- and betaherpesviruses, and its function is not known. To determine whether the protein is essential for replication of EBV in vitro, a recombinant virus which lacked its expression was made. The recombinant virus had no defects in assembly, egress, binding, or infectivity for B cells or epithelial cells. Infection of epithelial cells was, however, enhanced. The glycoprotein was sensitive to digestion with a glycoprotease that digests sialomucins, but no adhesion to cells that express selectins that bind to sialomucin ligands could be detected.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Virology, American Society for Microbiology, Vol. 88, No. 21 ( 2014-11), p. 12193-12201
    Abstract: Epstein-Barr virus (EBV) fusion with an epithelial cell requires virus glycoproteins gHgL and gB and is triggered by an interaction between gHgL and integrin αvβ5, αvβ6, or αvβ8. Fusion with a B cell requires gHgL, gp42, and gB and is triggered by an interaction between gp42 and human leukocyte antigen class II. We report here that, like alpha- and betaherpesviruses, EBV, a gammaherpesvirus, can mediate cell fusion if gB and gHgL are expressed in trans . Entry of a gH-null virus into an epithelial cell is possible if the epithelial cell expresses gHgL, and entry of the same virus, which phenotypically lacks gHgL and gp42, into a B cell expressing gHgL is possible in the presence of a soluble integrin. Heat is capable of inducing the fusion of cells expressing only gB, and the proteolytic digestion pattern of gB in virions changes in the same way following the exposure of virus to heat or to soluble integrins. It is suggested that the Gibbs free energy released as a result of the high-affinity interaction of gHgL with an integrin contributes to the activation energy required to cause the refolding of gB from a prefusion to a postfusion conformation. IMPORTANCE The core fusion machinery of herpesviruses consists of glycoproteins gB and gHgL. We demonstrate that as in alpha- and betaherpesvirus, gB and gHgL of the gammaherpesvirus EBV can mediate fusion and entry when expressed in trans in opposing membranes, implicating interactions between the ectodomains of the proteins in the activation of fusion. We further show that heat and exposure to a soluble integrin, both of which activate fusion, result in the same changes in the proteolytic digestion pattern of gB, possibly representing the refolding of gB from its prefusion to its postfusion conformation.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society for Microbiology ; 2005
    In:  Journal of Virology Vol. 79, No. 3 ( 2005-02), p. 1724-1733
    In: Journal of Virology, American Society for Microbiology, Vol. 79, No. 3 ( 2005-02), p. 1724-1733
    Abstract: The Epstein-Barr virus (EBV) BamHI-A rightward transcripts, or BARTs, are a family of mRNAs expressed in all EBV latency programs, including EBV-infected B cells in healthy carriers. Despite their ubiquitous expression, the regulation and biological function of BARTs are still unclear. In this study, the BART 5′ termini were characterized by using a procedure that selects capped, full-length mRNAs. Two TATA-less promoter regions, designated P1 and P2, were mapped. P1 had relatively high basal activity in both epithelial and B cells, whereas P2 exhibited higher activity in epithelial cells. Upon EBV infection of B cells, transcription from P1 was detected soon after infection, while expression from P2 was delayed. Promoter-reporter assays in transiently transfected cells revealed that P1 and P2 were differentially regulated. Interferon regulatory factor 7 (IRF7) and IRF5 negatively regulated P1 activity. c-Myc and C/EBP family members positively regulated P2. Regulation of P2 by C/EBPs was characterized by electrophoretic mobility shift assay, chromatin immunoprecipitation, and reporter assays. More-abundant BART expression in epithelial cells correlated with the relative expression of positive and negative regulators in these cells.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Virology, American Society for Microbiology, Vol. 80, No. 3 ( 2006-02), p. 1098-1109
    Abstract: The contribution of C/EBP proteins to Epstein-Barr virus (EBV) lytic gene expression and replication in epithelial cells was examined. Nasopharyngeal carcinoma cell lines constitutively expressed C/EBPβ and had limited C/EBPα expression, while the AGS gastric cancer cell line expressed significant levels of both C/EBPα and C/EBPβ. Induction of the lytic cycle in EBV-positive AGS/BX1 cells with phorbol ester and sodium butyrate treatment led to a transient stimulation of C/EBPβ expression and a prolonged increase in C/EBPα expression. In AGS/BX1 cells, endogenous C/EBPα and C/EBPβ proteins were detected associated with the ZTA and oriLyt promoters but not the RTA promoter. Electrophoretic mobility shift assays confirmed binding of C/EBP proteins to multiple sites in the ZTA and oriLyt promoters. The response of these promoters in reporter assays to transfected C/EBPα and C/EBPβ proteins was consistent with the promoter binding assays and emphasized the relative importance of C/EBPs for activation of the ZTA promoter. Mutation of the oriLyt promoter proximal C/EBP site had little effect on ZTA activation of the promoter in a reporter assay. However, this mutation impaired oriLyt DNA replication, suggesting a separate replication-specific contribution for C/EBP proteins. Finally, the overall importance of C/EBP proteins for lytic gene expression was demonstrated using CHOP10 to antagonize C/EBP DNA binding activity. Introduction of CHOP10 significantly impaired induction of the ZTA, RTA, and BMRF1 proteins in chemically treated AGS/BX1 cells. Thus, C/EBPβ and C/EBPα expression are associated with lytic induction in AGS cells, and expression of C/EBP proteins in epithelial cells may contribute to the tendency of these cells to exhibit constitutive low-level ZTA promoter activity.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...