GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-09-15)
    Abstract: Non-small cell lung cancer (NSCLC) has a poor prognosis with a 5 year survival rate of only ~ 10%. Important driver mutations underlying NSCLC affect the epidermal growth factor receptor (EGFR) causing the constitutive activation of its tyrosine kinase domain. There are efficient EGFR tyrosine kinase inhibitors (TKIs), but patients develop inevitably a resistance against these drugs. On the other hand, K Ca 3.1 channels contribute to NSCLC progression so that elevated K Ca 3.1 expression is a strong predictor of poor NSCLC patient prognosis. The present study tests whether blocking K Ca 3.1 channels increases the sensitivity of NSCLC cells towards the EGFR TKI erlotinib and overcomes drug resistance. mRNA expression of K Ca 3.1 channels in erlotinib-sensitive and -resistant NSCLC cells was analysed in datasets from Gene expression omnibus (GEO) and ArrayExpress. We assessed proliferation and migration of NSCLC cells. These (live cell-imaging) experiments were complemented by patch clamp experiments and Western blot analyses. We identified three out of four datasets comparing erlotinib-sensitive and -resistant NSCLC cells which revealed an altered expression of K Ca 3.1 mRNA in erlotinib-resistant NSCLC cells. Therefore, we evaluated the combined effect of erlotinib and the K Ca 3.1 channel inhibition with sencapoc. Erlotinib elicits a dose-dependent inhibition of migration and proliferation of NSCLC cells. The simultaneous application of the K Ca 3.1 channel blocker senicapoc increases the sensitivity towards a low dose of erlotinib (300 nmol/L) which by itself has no effect on migration and proliferation. Partial erlotinib resistance can be overcome by K Ca 3.1 channel blockade. The sensitivity towards erlotinib as well as the potentiating effect of K Ca 3.1 blockade is further increased by mimicking hypoxia. Our results suggest that K Ca 3.1 channel blockade may constitute a therapeutic concept for treating NSCLC and overcome EGFR TKI resistance. We propose that this is due to complementary mechanisms of action of both blockers.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Georg Thieme Verlag KG ; 2017
    In:  Neurology International Open Vol. 01, No. 03 ( 2017-06), p. E127-E135
    In: Neurology International Open, Georg Thieme Verlag KG, Vol. 01, No. 03 ( 2017-06), p. E127-E135
    Abstract: Calcium is the signal molecule crucial for almost all cellular processes. Disturbances in calcium homeostasis are responsible for a variety of pathological conditions. This review article summarizes recent findings on the influence of calcium in multiple sclerosis.
    Type of Medium: Online Resource
    ISSN: 2511-1795
    Language: English
    Publisher: Georg Thieme Verlag KG
    Publication Date: 2017
    detail.hit.zdb_id: 2878288-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Neuroinflammation, Springer Science and Business Media LLC, Vol. 17, No. 1 ( 2020-12)
    Abstract: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear. Methods In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological and imaging analyses with behavioral tests. By introducing cuprizone into the diet, we induced targeted and consistent demyelination of oligodendrocytes, over a period of 5 weeks. Subsequent myelin synthesis was enabled by reintroduction of normal food. Results Using specific immune-histological markers, we demonstrated that 2 weeks of cuprizone diet induced a 52% reduction of myelin content in the corpus callosum (CC) and a 35% reduction in the neocortex. An extended cuprizone diet increased myelin loss in the CC, while remyelination commenced in the neocortex. These histologically determined dynamics were reflected by MRI measurements from diffusion tensor imaging. Demyelination was associated with decreased fractional anisotropy (FA) values and increased modularity and clustering at the network level. MRI-derived modularization of the brain network and FA reduction in key anatomical regions, including the hippocampus, thalamus, and analyzed cortical areas, were closely related to impaired memory function and anxiety-like behavior. Conclusion Network-specific remyelination, shown by histology and MRI metrics, determined amelioration of functional performance and neuropsychiatric symptoms. Taken together, we illustrate the histological basis for the MRI-driven network responses to demyelination, where increased modularity leads to evolving damage and abnormal behavior in MS. Quantitative information about in vivo myelination processes is mirrored by diffusion-based imaging of microstructural integrity and network characteristics.
    Type of Medium: Online Resource
    ISSN: 1742-2094
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2156455-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2023
    In:  Biological Chemistry Vol. 404, No. 4 ( 2023-03-28), p. 303-310
    In: Biological Chemistry, Walter de Gruyter GmbH, Vol. 404, No. 4 ( 2023-03-28), p. 303-310
    Abstract: It is known that the thalamus plays an important role in pathological brain conditions involved in demyelinating, inflammatory and neurodegenerative diseases such as Multiple Sclerosis (MS). Beside immune cells and cytokines, ion channels were found to be key players in neuroinflammation. MS is a prototypical example of an autoimmune disease of the central nervous system that is classified as a channelopathy where abnormal ion channel function leads to symptoms and clinical signs. Here we review the influence of the cytokine-ion channel interaction in the thalamocortical system in demyelination and inflammation.
    Type of Medium: Online Resource
    ISSN: 1431-6730 , 1437-4315
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 1466062-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: European Journal of Medicinal Chemistry, Elsevier BV, Vol. 226 ( 2021-12), p. 113838-
    Type of Medium: Online Resource
    ISSN: 0223-5234
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2005170-0
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Neural Regeneration Research, Medknow, Vol. 14, No. 11 ( 2019), p. 1950-
    Type of Medium: Online Resource
    ISSN: 1673-5374
    Language: English
    Publisher: Medknow
    Publication Date: 2019
    detail.hit.zdb_id: 2388460-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 11 ( 2022-06-03), p. 6285-
    Abstract: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addition, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1β; IL-6; INF-α; INF-β) were characterized in C57Bl/6J mice. Thus, the hyperpolarization-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterologous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current density; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1β. It was found that Ih parameters were differentially altered by the application of the two cytokines to thalamic cells, while IL-1β increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolarized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hyperpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1β and INF-α increased and reduced oscillatory bursting, respectively. We conclude that HCN channels are not directly modulated by trace metals and divalent cation chelators but are subject to modulation by different MS-related cytokines.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Glia, Wiley, Vol. 67, No. 5 ( 2019-05), p. 870-883
    Abstract: In multiple sclerosis, demyelination occurs as a consequence of chronic autoimmunity in the central nervous system causing progressive neurological impairment in patients. After a demyelinating event, new myelin sheaths are formed by adult oligodendroglial progenitor cells; a process called remyelination. However, remyelination often fails in multiple sclerosis due to insufficient recruitment and differentiation of oligodendroglial precursor cells. A pivotal role for the two‐pore‐domain potassium (K 2P ) channel, TASK1, has already been proven for an animal model of multiple sclerosis. However, the mechanisms underlying the TASK1‐mediated effects are still elusive. Here, we tested the role of TASK1 channels in oligodendroglial differentiation and remyelination after cuprizone‐induced demyelination in male mice. We found TASK1 channels to be functionally expressed on primary murine and human, pluripotent stem cell‐derived oligodendrocytes. Lack of TASK1 channels resulted in an increase of mature oligodendrocytes in vitro as well as a higher number of mature oligodendrocytes and accelerated developmental myelination in vivo. Mechanistically, Task1 ‐deficient cells revealed a higher amount of phosphorylated WNK1, a kinase known to be involved in the downstream signaling of the myelination regulator LINGO‐1. Furthermore, we analyzed the effect of genetic TASK1 ablation or pharmacological TASK1 inhibition on disease‐related remyelination. Neither channel inhibition nor lack of TASK1 channels promoted remyelination after pathological demyelination. In summary, we conclude that functional TASK1 channels participate in the modulation of differentiating oligodendroglial cells in a previously unknown manner. However, while being involved in developmental myelination our data suggest that TASK1 channels have no major effect on remyelination.
    Type of Medium: Online Resource
    ISSN: 0894-1491 , 1098-1136
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1474828-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biological Chemistry, Walter de Gruyter GmbH, Vol. 404, No. 4 ( 2023-03-28), p. 355-375
    Abstract: Modulation of two-pore domain potassium (K 2P ) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.
    Type of Medium: Online Resource
    ISSN: 1431-6730 , 1437-4315
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 1466062-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 11, No. 490 ( 2019-05)
    Abstract: Interference with immune cell proliferation represents a successful treatment strategy in T cell–mediated autoimmune diseases such as rheumatoid arthritis and multiple sclerosis (MS). One prominent example is pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), which mediates de novo pyrimidine synthesis in actively proliferating T and B lymphocytes. Within the TERIDYNAMIC clinical study, we observed that the DHODH inhibitor teriflunomide caused selective changes in T cell subset composition and T cell receptor repertoire diversity in patients with relapsing-remitting MS (RRMS). In a preclinical antigen-specific setup, DHODH inhibition preferentially suppressed the proliferation of high-affinity T cells. Mechanistically, DHODH inhibition interferes with oxidative phosphorylation (OXPHOS) and aerobic glycolysis in activated T cells via functional inhibition of complex III of the respiratory chain. The affinity-dependent effects of DHODH inhibition were closely linked to differences in T cell metabolism. High-affinity T cells preferentially use OXPHOS during early activation, which explains their increased susceptibility toward DHODH inhibition. In a mouse model of MS, DHODH inhibitory treatment resulted in preferential inhibition of high-affinity autoreactive T cell clones. Compared to T cells from healthy controls, T cells from patients with RRMS exhibited increased OXPHOS and glycolysis, which were reduced with teriflunomide treatment. Together, these data point to a mechanism of action where DHODH inhibition corrects metabolic disturbances in T cells, which primarily affects profoundly metabolically active high-affinity T cell clones. Hence, DHODH inhibition may promote recovery of an altered T cell receptor repertoire in autoimmunity.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...