GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Physics D: Applied Physics, IOP Publishing, Vol. 56, No. 1 ( 2023-01-05), p. 015105-
    Abstract: Polarization-sensitive infrared photodetectors are widely needed to distinguish an object from its surrounding environment. Polarization-sensitive detection can be realized by using semiconductors with anisotropic geometry or anisotropic crystal arrangement, such as semiconductor nanowires and two-dimensional (2D) materials. However, these photodetectors show drawbacks in low light absorption, weak polarization sensitivity and stability issues. Here, we designed 2D InAs nanosheet based arrays that are highly suitable for polarization-sensitive infrared photodetection. By using the finite element method (FEM) based on COMSOL Multiphysics, we optimized the geometry of single free-standing InAs nanosheets, obtaining dichroic ratio up to 127 (average) in the wavelength range of 2–3 μ m by reducing the thickness and increasing the height. Extending this to a nanosheet array with an optimized geometry, an enhancement of the absorption intensity from 45% (for a single nanosheet) to over 67% with a dichroic ratio exceeding 50 in the wavelength range of 2–3 μ m can be achieved. Moreover, these unique light absorption properties are tolerant to incident angles up to 30°. The design of such nanosheet array provides a new route for the development of high-performance infrared photodetectors for polarization photodetection.
    Type of Medium: Online Resource
    ISSN: 0022-3727 , 1361-6463
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 209221-9
    detail.hit.zdb_id: 1472948-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Advanced Materials Technologies, Wiley, Vol. 8, No. 13 ( 2023-07)
    Abstract: In recent years, III–V semiconductor nanowires have been widely investigated for infrared photodetector applications due to their direct and suitable bandgap, unique optical and electrical properties, flexibility in device design and to create heterostructures, and/or grow on a foreign substrate such as Si with more effective strain relaxation compared with planar structures. In particular, vertically aligned and ordered nanowire arrays have emerged as a promising photodetector platform, since their geometry‐related light absorption and carrier transport properties can be tailored to achieve high photodetector performance and new functionalities. In this article, the state‐of‐the‐art progress in the development of various types of infrared photodetectors based on III–V semiconductor nanowire arrays is reviewed. The nanowire synthesis/fabrication methods are introduced briefly at first, followed by discussions on the working principle and device performance of various types of nanowire array‐based photodetectors and their emerging applications. Finally, we analyze the challenges and present the perspectives for the development of future low‐cost, large‐scale, high‐performance nanowire array infrared photodetectors for practical applications.
    Type of Medium: Online Resource
    ISSN: 2365-709X , 2365-709X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2850995-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nanoscale, Royal Society of Chemistry (RSC), Vol. 15, No. 23 ( 2023), p. 10033-10041
    Abstract: Detection of short-wave infrared (SWIR) and mid-wave infrared (MWIR) emissions remains challenging despite their importance in many emerging applications, including night vision, space imaging and remote sensing. III–V compound semiconductor materials such as InAs have an ideal band gap covering a spectral regime from near-infrared (NIR), SWIR to MWIR. However, due to their high dark current, InAs photodetectors normally require a low-temperature operation, which has greatly limited their practical applications. Here, we report the engineering of InAs nanowire arrays to achieve efficient photodetection of light at wavelengths ranging from NIR to MWIR (3500 nm). By using selective area metal–organic vapour-phase epitaxy, we optimise the nanowire growth temperature and V/III ratio to achieve wurtzite (WZ)-based InAs nanowire arrays with a high WZ density of ∼67%. Due to the n-type background doping of the InAs nanowires and the p-type InAs substrate used for nanowire growth, a p–n junction is formed, and an ultrawide room-temperature photoresponse ranging from 500 to 3500 nm is obtained under zero bias. It is found that the waveguide modes supported by the InAs nanowires result in a high peak responsivity of 0.44 A W −1 and a detectivity of 1.25 × 10 10 cm √Hz W −1 at a wavelength of 1600 nm, a bias voltage of only −0.1 V and a relatively high operating temperature of 150 K. Such a strong light trapping effect in the InAs nanowires also leads to significantly lower reflection compared to that observed in planar photodetectors, and thus strong absorption in the substrate extending the photoresponse up to the InAs bandgap edge of 3500 nm. Our work shows that through careful material optimisation and device design, InAs nanowire arrays are promising for the development of high-performance ultra-broadband infrared photodetectors for wavelengths ranging from NIR, SWIR to MWIR.
    Type of Medium: Online Resource
    ISSN: 2040-3364 , 2040-3372
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2023
    detail.hit.zdb_id: 2515664-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...