GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Education and Information Technologies, Springer Science and Business Media LLC
    Type of Medium: Online Resource
    ISSN: 1360-2357 , 1573-7608
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2001930-0
    SSG: 5,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Climate Dynamics Vol. 38, No. 9-10 ( 2012-5), p. 2017-2035
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 38, No. 9-10 ( 2012-5), p. 2017-2035
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 12, No. 4 ( 2022-04), p. 343-349
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2603450-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 9 ( 2019-05-01), p. 2517-2535
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 9 ( 2019-05-01), p. 2517-2535
    Abstract: The relative roles of buoy and Argo observations in two sea surface temperature (SST) analyses are studied in the global ocean and tropical Pacific Ocean over 2000–16 using monthly Extended Reconstructed SST version 5 (ERSSTv5) and Daily Optimum Interpolation SST version 2 (DOISST). Experiments show an overall higher impact by buoys than Argo floats over the global oceans and an increasing impact by Argo floats. The impact by Argo floats is generally larger in the Southern Hemisphere than in the Northern Hemisphere. The impact on trends and anomalies of globally averaged SST by either one is small when the other is used. The warming trend over 2000–16 remains significant by including either buoys or Argo floats or both. In the tropical Pacific, the impact by buoys was large over 2000–05 when the number of Argo floats was low, and became smaller over 2010–16 when the number and area coverage of Argo floats increased. The magnitude of El Niño and La Niña events decreases when the observations from buoys, Argo floats, or both are excluded. The impact by the Tropical Atmosphere Ocean (TAO) and Triangle Trans-Ocean Buoy Network (TRITON) is small in normal years and during El Niño events. The impact by TAO/TRITON buoys on La Niña events is small when Argo floats are included in the analysis systems, and large when Argo floats are not included. The reason for the different impact on El Niño and La Niña events is that the drifting buoys are more dispersed from the equatorial Pacific region by stronger trade winds during La Niña events.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 8 ( 2021-04), p. 2923-2939
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 8 ( 2021-04), p. 2923-2939
    Abstract: The NOAA/NESDIS/NCEI Daily Optimum Interpolation Sea Surface Temperature (SST), version 2.0, dataset (DOISST v2.0) is a blend of in situ ship and buoy SSTs with satellite SSTs derived from the Advanced Very High Resolution Radiometer (AVHRR). DOISST v2.0 exhibited a cold bias in the Indian, South Pacific, and South Atlantic Oceans that is due to a lack of ingested drifting-buoy SSTs in the system, which resulted from a gradual data format change from the traditional alphanumeric codes (TAC) to the binary universal form for the representation of meteorological data (BUFR). The cold bias against Argo was about −0.14°C on global average and −0.28°C in the Indian Ocean from January 2016 to August 2019. We explored the reasons for these cold biases through six progressive experiments. These experiments showed that the cold biases can be effectively reduced by adjusting ship SSTs with available buoy SSTs, using the latest available ICOADS R3.0.2 derived from merging BUFR and TAC, as well as by including Argo observations above 5-m depth. The impact of using the satellite MetOp-B instead of NOAA-19 was notable for high-latitude oceans but small on global average, since their biases are adjusted using in situ SSTs. In addition, the warm SSTs in the Arctic were improved by applying a freezing point instead of regressed ice-SST proxy. This paper describes an upgraded version, DOISST v2.1, which addresses biases in v2.0. Overall, by updating v2.0 to v2.1, the biases are reduced to −0.07° and −0.14°C in the global ocean and Indian Ocean, respectively, when compared with independent Argo observations and are reduced to −0.04° and −0.08°C in the global ocean and Indian Ocean, respectively, when compared with dependent Argo observations. The difference against the Group for High Resolution SST (GHRSST) Multiproduct Ensemble (GMPE) product is reduced from −0.09° to −0.01°C in the global oceans and from −0.20° to −0.04°C in the Indian Ocean.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 4 ( 2020-02-15), p. 1351-1379
    Abstract: This analysis estimates uncertainty in the NOAA global surface temperature (GST) version 5 (NOAAGlobalTemp v5) product, which consists of sea surface temperature (SST) from the Extended Reconstructed SST version 5 (ERSSTv5) and land surface air temperature (LSAT) from the Global Historical Climatology Network monthly version 4 (GHCNm v4). Total uncertainty in SST and LSAT consists of parametric and reconstruction uncertainties. The parametric uncertainty represents the dependence of SST/LSAT reconstructions on selecting 28 (6) internal parameters of SST (LSAT), and is estimated by a 1000-member ensemble from 1854 to 2016. The reconstruction uncertainty represents the residual error of using a limited number of 140 (65) modes for SST (LSAT). Uncertainty is quantified at the global scale as well as the local grid scale. Uncertainties in SST and LSAT at the local grid scale are larger in the earlier period (1880s–1910s) and during the two world wars due to sparse observations, then decrease in the modern period (1950s–2010s) due to increased data coverage. Uncertainties in SST and LSAT at the global scale are much smaller than those at the local grid scale due to error cancellations by averaging. Uncertainties are smaller in SST than in LSAT due to smaller SST variabilities. Comparisons show that GST and its uncertainty in NOAAGlobalTemp v5 are comparable to those in other internationally recognized GST products. The differences between NOAAGlobalTemp v5 and other GST products are within their uncertainties at the 95% confidence level.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 39, No. 12 ( 2022-12), p. 1943-1959
    Abstract: This paper describes the new International Comprehensive Ocean–Atmosphere Data Set (ICOADS) near-real-time (NRT) release (R3.0.2), with greatly enhanced completeness over the previous version (R3.0.1). R3.0.1 had been operationally produced monthly from January 2015 onward, with input data from the World Meteorological Organization (WMO) Global Telecommunication Systems (GTS) transmissions in the Traditional Alphanumeric Codes (TAC) format. Since the release of R3.0.1, however, many observing platforms have changed, or are in the process of transitioning, to the Binary Universal Form for Representation of Meteorological Data (BUFR) format. R3.0.2 combines input data from both BUFR and TAC formats. In this paper, we describe input data sources; the BUFR decoding process for observations from drifting buoys, moored buoys, and ships; and the data quality control of the TAC and BUFR data streams. We also describe how the TAC and BUFR streams were merged to upgrade R3.0.1 into R3.0.2 with duplicates removed. Finally, we compare the number of reports and spatial coverage of essential climate variables (ECVs) between R3.0.1 and R3.0.2. ICOADS NRT R3.0.2 shows both quantitative and qualitative gains from the inclusion of BUFR reports. The number of observations in R3.0.2 increased by nearly 1 million reports per month, and the coverage of buoy and ship sea surface temperatures (SSTs) on monthly 2° × 2° grids increased by 20%. The number of reported ECVs also increased in R3.0.2. For example, observations of SST and sea level pressure (SLP) increased by around 30% and 20%, respectively, as compared to R3.0.1, and salinity is a new addition to the ICOADS NRT product in R3.0.2. Significance Statement The International Comprehensive Ocean–Atmosphere Data Set (ICOADS) is the largest collection of surface marine observations spanning from 1662 to the present. A new version, ICOADS near-real-time 3.0.2, includes data transmitted in the Binary Universal Form for Representation of Meteorological Data (BUFR) format, in combination with Traditional Alphanumeric Codes (TAC) data. Many of the organizations that report observations in near–real time have moved to BUFR, so this update brings ICOADS into alignment with collections and archives of these international data distributions. By including the BUFR reports, the number of observations in the upgraded version of ICOADS increased by nearly one million reports per month and spatial coverage of buoy and ship SSTs increased by 20% over the previous version.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2015
    In:  Science Vol. 348, No. 6242 ( 2015-06-26), p. 1469-1472
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 348, No. 6242 ( 2015-06-26), p. 1469-1472
    Abstract: Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming “hiatus.” Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a “slowdown” in the increase of global surface temperature.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Journal of Climate Vol. 16, No. 20 ( 2003-10), p. 3344-3356
    In: Journal of Climate, American Meteorological Society, Vol. 16, No. 20 ( 2003-10), p. 3344-3356
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...