GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    Online Resource
    Online Resource
    Royal Society of Chemistry (RSC) ; 2020
    In:  Polymer Chemistry Vol. 11, No. 8 ( 2020), p. 1496-1503
    In: Polymer Chemistry, Royal Society of Chemistry (RSC), Vol. 11, No. 8 ( 2020), p. 1496-1503
    Type of Medium: Online Resource
    ISSN: 1759-9954 , 1759-9962
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2020
    detail.hit.zdb_id: 2528812-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Chinese Chemical Letters, Elsevier BV, Vol. 34, No. 10 ( 2023-10), p. 108592-
    Type of Medium: Online Resource
    ISSN: 1001-8417
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2096242-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Advances Vol. 7, No. 31 ( 2021-07-30)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 7, No. 31 ( 2021-07-30)
    Abstract: Understanding of dedifferentiation, an indicator of poo prognosis for patients with thyroid cancer, has been hampered by imprecise and incomplete characterization of its heterogeneity and its attributes. Using single-cell RNA sequencing, we explored the landscape of thyroid cancer at single-cell resolution with 46,205 cells and delineated its dedifferentiation process and suppressive immune microenvironment. The developmental trajectory indicated that anaplastic thyroid cancer (ATC) cells were derived from a small subset of papillary thyroid cancer (PTC) cells. Moreover, a potential functional role of CREB3L1 on ATC development was revealed by integrated analyses of copy number alteration and transcriptional regulatory network. Multiple genes in differentiation-related pathways (e.g., EMT) were involved as the downstream targets of CREB3L1, increased expression of which can thus predict higher relapse risk of PTC. Collectively, our study provided insights into the heterogeneity and molecular evolution of thyroid cancer and highlighted the potential driver role of CREB3L1 in its dedifferentiation process.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Stem Cell, Elsevier BV, Vol. 29, No. 1 ( 2022-01), p. 149-159.e7
    Type of Medium: Online Resource
    ISSN: 1934-5909
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2375356-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-11-04)
    Abstract: Cancer-associated fibroblasts (CAFs) are the predominant components of the tumor microenvironment (TME) and influence cancer hallmarks, but without systematic investigation on their ubiquitous characteristics across different cancer types. Here, we perform pan-cancer analysis on 226 samples across 10 solid cancer types to profile the TME at single-cell resolution, illustrating the commonalities/plasticity of heterogenous CAFs. Activation trajectory of the major CAF types is divided into three states, exhibiting distinct interactions with other cell components, and relating to prognosis of immunotherapy. Moreover, minor CAF components represent the alternative origin from other TME components (e.g., endothelia and macrophages). Particularly, the ubiquitous presentation of endothelial-to-mesenchymal transition CAF, which may interact with proximal SPP 1 + tumor-associated macrophages, is implicated in endothelial-to-mesenchymal transition and survival stratifications. Our study comprehensively profiles the shared characteristics and dynamics of CAFs, and highlight their heterogeneity and plasticity across different cancer types. Browser of integrated pan-cancer single-cell information is available at https://gist-fgl.github.io/sc-caf-atlas/ .
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 2994-2994
    Abstract: Abstract 2994 Despite recent advances with new drugs such as bortezomib, thalidomide and lenalidomide, multiple myeloma (MM) remains an incurable disease. Used as single agents, these compounds have shown marked antitumor activity, but the number of patients with relapsed and refractory disease remains high. Combination of these agents with other classes of novel drugs would offer great promise to improve patient outcome. AT9283 (Astex therapeutics, Cambridge UK) is a multi-targeted kinase inhibitor that inhibits Aurora A (AURKA), Aurora B (AURKB) and Janus Kinase (JAKs). AURKA and AURKB expression has been correlated with genetic instability and cellular proliferation in MM; therefore, Aurora kinases represent an attractive therapeutic target in MM. In addition the JAK/STAT pathway plays an important role in the survival and proliferation of MM cells. Blocking this pathway may therefore be critical for the survival of MM cells. AT9283 decreased both phospho-Histone H3 and the phosphorylation of Aurora A at Thr 288 in Nocodazole treated cells, suggesting the dual activity of AT9283 against AURKA and AURKB. Importantly, besides Aurora kinase inhibition, we observed that AT9283 inhibited STAT3 tyrosine phosphorylation within 30 minutes of treatment. The effect of AT9283 on pSTAT3 inhibition was further investigated by using U3A cells stably expressing a luciferase reporter gene under the control of a STAT-dependent promoter. AT9283 inhibited STAT3-dependent luciferase activity with an EC50 of approximately 0.125 μ M. Consistent with AT9283 induced cytotoxicity, genetic depletion of STAT3, AURKA or AURKB showed growth inhibition of MM cells, suggesting that AT9283-induced inhibition of these molecules is in part the underlying mechanism of MM cell growth inhibition. In vivo data using a xenograft mouse model of human MM show that mice treated with AT9283 demonstrated slower tumor growth compared to the control group (p=0.018) and prolongation in median overall survival (32 days in treated group versus 18 days in control group; p 〈 0.0001) without adverse effects. We next evaluated the activity of AT9283 in combination with established MM drugs and strong synergistic effect was found when AT9283 was combined with lenalidomide (Selleck Chemicals LLC, TX, USA) (Combination Index 〈 0.9). We hypothesized that the synergistic effect of this combination is due to the fact that the two drugs target different pathways and different phases of the cell cycle, thus augmenting their individual anti-myeloma activity. We examined MM cell cytotoxicity of the combination by using AT9283 and lenalidomide at concentrations lower than their maximal cytotoxic concentrations. Increasing doses of AT9283 (0 -0.125 μ M) were added to lenalidomide (0-2μ M) and a significant decrease in viability (as measured by MTT and cell growth as determined by 3H-TdR at 48 h) was observed with combined therapy compared to either agent alone. A significant increase (55.7%) in early and late apoptosis occurred after 72 hours of exposure of cells to combined therapy with associated caspase-8 and PARP cleavage. Combination treatment resulted in downregulation of pSTAT3 and pERK following 4 hours of treatment. Considering the role that the BM microenvironment plays in growth and survival of MM cells, we examined whether the combination of low dose AT9283 plus lenalidomide induced MM cell death in the context of the BM microenvironment. MM.1S cells were cultured with or without BMSCs in the presence or absence of AT9283, lenalidomide or in combination regimen. Combined therapy inhibited 3H-TdR uptake of MM.1S cells cultured in the presence of BMSCs. Interestingly, we observed that AT9283 plus lenalidomide downregulated the expression of the p-STAT3 and p-ERK when MM.1S cells were cultured with BMSCs, highlighting the role of this drug combination in overcoming the protective effect of BMSCs. These results provide the rationale for the clinical evaluation of AT9283 in combination with lenalidomide in MM patients. Disclosures: Squires: 3Astex Therapeutics Ltd: Employment. Anderson:MILLENNIUM: Consultancy; CELGENE: Consultancy; NOVARTIS: Consultancy; MERCK: Consultancy; ONYX: Consultancy; BMS: Consultancy. Raje:novartis: Consultancy; celgene: Consultancy; astra zeneca: Research Funding; acetylon: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2484-2484
    Abstract: Myeloablative high-dose melphalan (HDM) followed by autologous stem cell transplantation (ASCT) remains one of the cornerstones of multiple myeloma (MM) treatment. Conceptually, HDM is based on the notion that a single melphalan dose (typically 200 mg/m2) exceeding the myelotoxicity threshold is associated with a steep increase in the dose response curve and higher degree of MM cell killing compared to fractionated delivery (without the need for hematopoietic stem cell support) of the same cumulative dose. Despite its importance in the therapeutic management of MM, HDM-ASCT is not considered a curative procedure, presumably because chemoresistant subpopulations of MM cells survive HDM and lead to eventual relapse. Elucidating the molecular mechanisms responsible for resistance to HDM in MM could have major implications for the identification of patients with the highest probability of major clinical benefit from this procedure. However, these resistance mechanisms remain incompletely understood. To address this void in the field, we examined whether an open-ended unbiased genome-wide functional characterization of MM cells could uncover genes associated with resistance to HDM and quantify the degree to which other, non-genetically determined, mechanisms of resistance contribute to this process. Specifically, we used the human myeloma cell line MM1.S, transduced with lentiviral construct for the Cas9 nuclease and with pooled lentiviral particles of the GeCKO library (Shalem et al., 2014), which consists of 2 pooled single guide RNA (sgRNA) sub-libraries (~120,000 sgRNAs; targeting ~19,000 genes and ~1800 miRNAs). Using this CRISPR/Cas9-based approach to mutagenize and cause loss of function of the genes recognized by the respective sgRNAs, we sought to facilitate the prospective isolation of MM cells resistant to HDM. To better simulate the exposure of MM cells to HDM in the autologous transplant setting, we adapted our in vitro treatment to include an initial dose of 25 µM of melphalan and sequential one-hour interval partial wash-outs, to achieve gradual reduction of melphalan concentrations, consistent with the pharmacokinetic profile observed in the clinical setting (Nath et al., 2010). We repeated twice the genome-wide knock-out screens, with biological replicates on both the transduction and cell culture level (maintaining a coverage of at least 1000 cells per individual sgRNA). While the in vitro simulation of clinical HDM with our wash-out regimen achieved 〉 99% estimated reduction in MM cell viability in both screens, viable cells re-emerged in cultures from all biological and technical replicates. HDM-resistant cells were processed to quantify their sgRNA enrichment or depletion, using next generation sequencing, and also characterize the sensitivity of these MM cells to repeat exposure to HDM concentrations consistent with the genome-wide CRISPR screens. We observed that, despite having survived a previous round of exposure to HDM, the majority ( 〉 90%) of these sgRNA-transduced cells were again highly responsive to repeat treatment with HDM. A similar result was also obtained with MM1.S cells which had not been previously transduced with the sgRNA sub-libraries. While ongoing investigation in our lab addresses these findings on additional MM cell lines, these observations on a well-established MM cell line model of melphalan responsiveness raises the intriguing possibility that genetically-determined forms of HDM resistance, conferred after an unbiased genome scale evaluation through the CRISPR/Cas9-editing methodology, may only represent a small fraction of the MM cells which survive a round of HDM treatment, and that other non-genetically determined mechanisms may mediate the principal mode of resistance, even in the cell autonomous context of our experiments. In turn, this suggests that future efforts to individualize the administration of HDM-ASCT in patients and their post-ASCT monitoring should not rely exclusively on genetic markers identified and validated from preclinical experimentation with repeated rounds of MM cell exposure to the equivalent of myelotoxic melphalan concentrations. Instead, renewed emphasis is warranted on identification of functional markers correlating with the ability of MM cells to develop transient resistance to HDM, even in the absence of constitutive genetically-determined mechanisms of resistance. Disclosures Mitsiades: Novartis: Research Funding; TEVA: Research Funding; Janssen/Johnson & Johnson: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 104, No. 7 ( 2004-10-01), p. 2163-2171
    Abstract: In vitro studies show that BCR/ABL-expressing hematopoietic cells exhibit altered adhesion properties. No in vivo studies show whether the altered adhesion properties affect BCR/ABL leukemo-genesis. Using mice with homozygous inactivation of genes encoding the 2 adhesion molecules P-selectin and intercellular adhesion molecule-1 (ICAM1), we show that the mutant mice develop BCR/ABL-induced chronic myeloid leukemia (CML)-like leukemia at a significantly faster rate than do wild-type (WT) mice. Lack of P-selectin and ICAM1 did not have a significant effect on the development of B-cell acute lymphoblastic leukemia (BALL) induced by BCR/ABL. Using mice deficient for P-selectin or ICAM1 alone, we show that P-selectin plays a major role in the acceleration of CML-like leukemia. Lack of P-selectin resulted in early release of BCR/ABL-expressing myeloid progenitors from bone marrow, appearing to alter the biologic properties of leukemic cells rather than their growth rate by increasing their homing to the lungs, causing fatal lung hemorrhages. These results indicate that adhesion of BCR/ABL-expressing myeloid progenitors to marrow stroma through P-selectin and ICAM1 play an inhibitory role in the development of CML-like disease, suggesting that improvement of adhesion between BCR/ABL-expressing myeloid progenitor cells and bone marrow stroma may be of therapeutic value for human CML. (Blood. 2004;104:2163-2171)
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society of Hematology ; 2005
    In:  Blood Vol. 106, No. 11 ( 2005-11-16), p. 2861-2861
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 2861-2861
    Abstract: The BCR-ABL inhibitor imatinib mesylate is the current approved treatment for Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML). While this agent is effective in the chronic phase of CML, it is less effective in advanced disease (acelerated phase or blast crisis), and resistance to imatinib is an issue at all stages of disease, particularly advanced. Resistance is mediated primarily by BCR-ABL mutations, although other mechanisms have also been implicated. Another key issue with imatinib therapy is that molecular remission in imatinib-treated CML patients is difficult to achieve, leaving patients at risk of relapse. We have previously observed that imatinib significantly prolongs survival of CML mice, but is not curative (Hu et al, Nature Genetics36[5]:453–461, 2004). We hypothesize that this can be attributed to the inability of imatinib to completely kill CML stem cells. We identified that BCR-ABL-expressing Lin-c-KIT+Sca-1+ bone marrow cells are CML stem cells in mice. We tested whether BMS-214662 (which has been shown to have an inhibitory effect on growth of non-proliferating cancer cells) (Lee et al, Proceedings of the AACR42:260s, 2001) reduces leukemia stem cell populations in CML mice. Donor bone marrow cells from C57BL/6 mice were transduced with P210BCR-ABL-IRES-GFP retrovirus, followed by transplantation into lethally irradiated C57BL/6 recipient mice. Eight days after transplantation, BMS-214662 was given orally once a day at a dose of 300 mg/kg for 7 days. Bone marrow cells from the treated CML mice were then analyzed by FACS for CML stem cells (GFP+Lin-c-Kit+Sca-1+). CML mice treated with placebo, dasatinib (a novel, oral, multi-targeted kinase inhibitor that targets BCR-ABL and SRC family kinases) 10 mg/kg, twice daily (BID), BMS-214662, or dasatinib 10 mg/kg BID in combination with BMS-214662. Numbers of leukemia stem cells per bone were significantly lower in mice treated with BMS-214662 alone, dasatinib alone, or both BMS-214662 and dasatinib, compared with placebo-treated mice. Among different treatments, the combination of BMS-214662 and dasatinib had the strongest inhibitory effect on CML stem cells. Inhibition of the leukemia stem cells by dasatinib could be due to its inhibitory effect on BCR-ABL or SRC kinases, whereas BMS-214662 must function through other mechanisms. BMS-214662 is also a farnesyl transferase inhibitor (FTI), which reduces Ras activation. However, our control experiment showed that other FTIs did not inhibit proliferation of non-proliferating cancer cells (data not shown). This suggests that BMS-214662 inhibits CML stem cells through unknown mechanisms. In summary, BMS-214662 is a potent inhibitor of CML stem cells, and combinatorial use of BMS-214662 and dasatinib may provide more durable responses, and potentially a curative therapy for CML patients. Given the proven activity of dasatinib against a spectrum of imatinib-resistant BCR-ABL mutations (O’Hare, et al. Cancer Res65[11] :4500–5, 2005; Shah et al, Science, 305:399, 2004), and the apparent activity of dasatinib against stem cells in vivo shown here, this combination could potentially suppress the emergence of resistance, further adding to the durability of response.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 276-276
    Abstract: Most conventional methods to sensitively quantify tumor cell proliferation and viability in vitro involve processing of cells in ways that preclude continuation of the respective experiment or prevent the longitudinal collection of data. This common technical feature of conventional assays limits their ability to provide detailed insight into the kinetics of tumor cell responses to treatment(s). Additionally, these limitations hinder the use of these assays to monitor how the kinetics of treatment response can be altered by nonmalignant "accessory" cells of the tumor microenvironment (e.g. bone marrow stromal cells [BMSCs] for hematologic malignancies or bone metastases of solid tumors). To address these obstacles, we modified our previously developed tumor cell compartment-specific bioluminescence imaging (CS-BLI) platform (McMillin et al. Nat Med. 2010), to enable longitudinal assessment of tumor cell response to diverse experimental conditions; we cultured luciferase-expressing tumor cells, with or without stromal cells, in the presence of bioluminescent substrates, using optimized conditions which provide detectable bioluminescent signal even after several days of culture, while having no adverse effect on the viability of tumor or non-malignant cells in this system. This modified approach (time-lapse CSBLI, [TL-CSBLI] ) preserved the linear correlation of bioluminescent signal with tumor cell viability. Furthermore, results obtained at the end of the experiment and during interim time-points are consistent with those generated using either non-time-lapse applications of CS-BLI or conventional techniques. We applied TL-CSBLI to delineate, in high-throughput manner, the temporal dynamics of the responses of tumor cells (e.g. multiple myeloma (MM) and other hematologic malignancies) to diverse treatments (e.g. conventional chemotherapeutics, glucocorticoids; proteasome inhibitors (PIs, bortezomib or carfilzomib), and kinase inhibitors). Using the time-lapse capabilities of this assay, we evaluated tumor cell responses in the presence vs. absence of stromal cells. We observed that the kinetics of tumor cell response to diverse therapeutic classes are heterogeneous, even within the same tumor type: for instance, tumor cells with pronounced responses at the end of drug incubation (e.g. 24, 48, 72, hrs after initiation of treatment with PIs, DNA-damaging chemotherapeutics, or dexamethasone respectively), can have different magnitude of responses at intermediate time points. This suggests that TL-CSBLI data can further stratify treatment-responsive tumor cells into those with early vs. late kinetics of response. We also observed that the kinetics of the proliferative / anti-apoptotic effect conferred by stromal cells on tumor cells are highly variable between different cell lines, even within the same tumor type. For instance, the time between initiation of coculture and maximum stimulation of tumor cell viability by stromal cells was variable between cell lines and did not correlate with the magnitude of stimulation by stromal cells. Importantly, TL-CSBLI identified that the response of diverse types of tumor cells to treatments can be delayed in the presence of stromal cells, compared to conventional tumor cell monocultures: this initial delay in treatment response of tumor cells in stromal co-cultures may be observed even in cases where similar cytoreductive responses are eventually observed at later time-points in both the presence and absence of stromal cells. This observation suggests that a more expansive definition of stroma-induced resistance to a given treatment may be warranted, to specifically incorporate the ability of stromal cells to delay the tumor cell response to such treatment. In summary, TL-CSBLI enables detailed characterization of the kinetics of tumor cell responses to diverse experimental conditions. Its use can provide insight into the underappreciated impact that cell-autonomous variations or stroma-induced changes in the kinetics of tumor cell response to a given anti-tumor therapy can have on determining its efficacy. This is particularly consequential for agents (e.g. PIs) which have clinical pharmacokinetic profiles associated with transient peak exposure. Disclosures McMillin: Axios Biosciences: Equity Ownership; DFCI: patent submission on stromal co-culture technologies Patents & Royalties. Negri:DFCI: patent submission on stromal co-culture technologies Patents & Royalties. Mitsiades:Johnson & Johnson: Research Funding; Amgen: Research Funding; Celgene: Consultancy, Honoraria; Millennium Pharmaceuticals: Consultancy, Honoraria; DFCI: patent submission on stromal co-culture technologies Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...