GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 122, No. 2 ( 2013-07-11), p. 179-187
    Abstract: Stem cell gene therapy results in enhanced virus-specific immunity and recovery of CD4+ T cells in a nonhuman primate model of AIDS. Gene therapy–mediated protection of stem cells results in a disease state similar to that observed in long-term nonprogressors.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 4802-4802
    Abstract: Background: Hematopoietic stem cell (HSC) transplantation remains the only clinically observed path to functional cure of HIV infection. To better understand the mechanism of HSC-driven HIV control, and apply this therapy to a greater number of patients, we have developed a model of combination antiretroviral therapy (cART)-suppressed HIV infection in the pigtailed macaque, applicable to both gene therapy- and allogeneic transplant-based cure strategies. Following transplantation of HIV-resistant, autologous cells into conditioned animals, we are evaluating the extent to which protected cell progeny impede infection by SIV/HIV (SHIV) chimeric virus in vivo. Methods: Animals are challenged with SHIV virus containing an HIV envelope, after which a 3-drug cART regimen is initiated. Autologous HSCs are engineered to resist infection through targeted disruption of the CCR5 genetic locus using Zinc Finger Nucleases (ZFNs). Engraftment, persistence, and SHIV response of these autologous stem cells, and stem cell-derived lymphoid and myeloid cells, are measured in vivo. Results: SHIV infection in the pigtailed macaque model results in sustained viremia with consequent reduction in CD4+ T cells. Moreover, administration of three-drug cART leads to rapid and durable suppression of plasma viremia to 〈 30 copies/mL plasma - suggesting that this model recapitulates key features of HIV infection and treatment in humans. CCR5 targeting experiments yield up to 60% gene disruption in CD34+ cells ex vivo, translating to approximately 5% disruption in vivo following transplant. Importantly, up to 10% of transplanted cells carry two disrupted alleles of CCR5; these cells should preferentially reconstitute CD4+ T-cell pools and other susceptible subsets following SHIV challenge. Consistent with this prediction, our preliminary data suggest that CCR5-deleted cells undergo positive selection following SHIV challenge in vivo. Conclusions: Our pigtailed macaque model of HIV infection and cART represents a promising platform for modeling functional cure strategies. Here we show that CCR5 deletion does not impair HSC engraftment or differentiation, and that CCR5-deleted cells can undergo SHIV-dependent positive selection even when present at low levels. Our model enables the evaluation of novel therapeutic approaches in the clinically relevant context of cART controlled SHIV infection - a setting of particular importance to approaches aimed at addressing the viral reservoir. Disclosures Wang: Sangamo Biosciences: Employment. Holmes:Sangamo Biosciences: Employment. Gregory:Sangamo Biosciences: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 3 ( 2017-02)
    Abstract: The envelope (Env) glycoprotein of HIV is expressed on the surface of productively infected cells and can be used as a target for cytotoxic immunoconjugates (ICs), in which cell-killing moieties, including toxins, drugs, or radionuclides, are chemically or genetically linked to monoclonal antibodies (MAbs) or other targeting ligands. Such ICs could be used to eliminate persistent reservoirs of HIV infection. We have found that MAbs which bind to the external loop of gp41, e.g., MAb 7B2, make highly effective ICs, particularly when used in combination with soluble CD4. We evaluated the toxicity, immunogenicity, and efficacy of the ICs targeted with 7B2 in mice and in simian-human immunodeficiency virus-infected macaques. In the macaques, we tested immunotoxins (ITs), consisting of protein toxins bound to the targeting agent. ITs were well tolerated and initially efficacious but were ultimately limited by their immunogenicity. In an effort to decrease immunogenicity, we tested different toxic moieties, including recombinant toxins, cytotoxic drugs, and tubulin inhibitors. ICs containing deglycosylated ricin A chain prepared from ricin toxin extracted from castor beans were the most effective in killing HIV-infected cells. Having identified immunogenicity as a major concern, we show that conjugation of IT to polyethylene glycol limits immunogenicity. These studies demonstrate that cytotoxic ICs can target virus-infected cells in vivo but also highlight potential problems to be addressed. IMPORTANCE It is not yet possible to cure HIV infection. Even after years of fully effective antiviral therapy, a persistent reservoir of virus-infected cells remains. Here we propose that a targeted conjugate consisting of an anti-HIV antibody bound to a toxic moiety could function to kill the HIV-infected cells that constitute this reservoir. We tested this approach in HIV-infected cells grown in the lab and in animal infections. Our studies demonstrated that these immunoconjugates are effective both in vitro and in test animals. In particular, ITs constructed with the deglycosylated A chain prepared from native ricin were the most effective in killing cells, but their utility was blunted because they provoked immune reactions that interfered with the therapeutic effects. We then demonstrated that coating of the ITs with polyethylene glycol minimized the immunogenicity, as has been demonstrated with other protein therapies.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Virology, American Society for Microbiology, Vol. 85, No. 8 ( 2011-04-15), p. 3767-3779
    Abstract: Among Old World monkeys, pig-tailed macaques (Pt) are uniquely susceptible to human immunodeficiency virus type 1 (HIV-1), although the infection does not persist. We demonstrate that the susceptibility of Pt T cells to HIV-1 infection is due to the absence of postentry inhibition by a TRIM5 isoform. Notably, substitution of the viral infectivity factor protein, Vif, with that from pathogenic SIVmne enabled replication of HIV-1 in Pt T cells in vitro . When inoculated into juvenile pig-tailed macaques, the Pt-tropic HIV-1 persistently replicated for more than 1.5 to 2 years, producing low but measurable plasma viral loads and persistent proviral DNA in peripheral blood mononuclear cells. It also elicited strong antibody responses. However, there was no decline in CD4 + T cells or evidence of disease. Surprisingly, the Pt-tropic HIV-1 was rapidly controlled when inoculated into newborn Pt macaques, although it transiently rebounded after 6 months. We identified two notable differences between the Pt-tropic HIV-1 and SIVmne. First, SIV Vif does not associate with Pt-tropic HIV-1 viral particles. Second, while Pt-tropic HIV-1 degrades both Pt APOBEC3G and APOBEC3F, it prevents their inclusion in virions to a lesser extent than pathogenic SIVmne. Thus, while SIV Vif is necessary for persistent infection by Pt-tropic HIV-1, improved expression and inhibition of APOBEC3 proteins may be required for robust viral replication in vivo . Additional adaptation of the virus may also be necessary to enhance viral replication. Nevertheless, our data suggest the potential for the pig-tailed macaque to be developed as an animal model of HIV-1 infection and disease.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2011
    In:  Journal of Virology Vol. 85, No. 19 ( 2011-10), p. 9956-9963
    In: Journal of Virology, American Society for Microbiology, Vol. 85, No. 19 ( 2011-10), p. 9956-9963
    Abstract: The retroviral restriction factor TRIMCyp, derived from the TRIM5 gene, blocks replication at a postentry step. TRIMCyp has so far been found in four species of Asian macaques, Macaca fascicularis , M. mulatta , M. nemestrina , and M. leonina . M. fascicularis is commonly used as a model for AIDS research, but TRIMCyp has not been analyzed in detail in this species. We analyzed the prevalence of TRIMCyp in samples from Indonesia, Indochina, the Philippines, and Mauritius. We found that TRIMCyp is present at a higher frequency in Indonesian than in Indochinese M. fascicularis macaques and is also present in samples from the Philippines. TRIMCyp is absent in Mauritian M. fascicularis macaques. We then analyzed the restriction specificity of TRIMCyp derived from three animals of Indonesian origin. One allele, like the prototypic TRIMCyp alleles described for M. mulatta and M. nemestrina , restricts human immunodeficiency virus type 2 (HIV-2) and feline immunodeficiency virus (FIV) but not HIV-1. The others restrict HIV-1 and FIV but not HIV-2. Mutagenesis studies confirmed that polymorphisms at amino acid residues 369 and 446 in TRIMCyp (or residues 66 and 143 in the cyclophilin A [CypA] domain) confer restriction specificity. Additionally, we identified a polymorphism in the coiled-coil domain that appears to affect TRIMCyp expression or stability. Taken together, these data show that M. fascicularis has the most diverse array of TRIM5 restriction factors described for any primate species to date. These findings are relevant to our understanding of the evolution of retroviral restriction factors and the use of M. fascicularis models in AIDS research.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2011
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Virology, American Society for Microbiology, Vol. 73, No. 10 ( 1999-10), p. 8201-8215
    Abstract: We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Virology, American Society for Microbiology, Vol. 90, No. 19 ( 2016-10), p. 8644-8660
    Abstract: Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant “tier 2” isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against 〉 50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Virology, American Society for Microbiology, Vol. 75, No. 18 ( 2001-09-15), p. 8589-8596
    Abstract: Transmission of human immunodeficiency virus type 1 (HIV-1) is largely a result of heterosexual exposure, leading many investigators to evaluate mucosal vaccines for protection against intravaginal (i.vag.) transmission in macaque models of AIDS. Relatively little is known, however, about the dynamics of viral replication and the ensuing immune response following mucosal infection. We have utilized a simian-human immunodeficiency virus (SHIV) to study the differences in viremia, CD4 T-cell percentages, and mucosal and systemic anti-SHIV humoral and cellular immune responses during primary infection of animals infected either intravenously (i.v.) or i.vag. Positive viral cocultures, peripheral blood mononuclear cell viral load peaks, and CD4 cell declines were delayed by 1 week in the i.vag. inoculated animals compared to the animals infected i.v., demonstrating delayed viral spreading to the periphery. In contrast, mucosal anti-SHIV antibody levels were greater in magnitude and arose more rapidly and mucosal CD8 + T-cell responses were enhanced in the i.vag. group animals, whereas both the magnitudes and times of onset of systemic immune responses for the animals in the two groups did not differ. These observations demonstrate that compartmentalization of viral replication and induction of local antiviral immunity occur in the genital tract early after i.vag. but not i.v. inoculation. Induction of mucosal immunity to target this local, contained replication should be a goal in HIV vaccine development.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2001
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 2 ( 2008-01-15), p. 638-651
    Abstract: Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Virology, American Society for Microbiology, Vol. 73, No. 4 ( 1999-04), p. 3134-3146
    Abstract: We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against intravenous challenge by the cloned homologous virus E11S but that this protection was only partially effective against the uncloned virus, SIVmne. In the present study, we examine the protective efficacy of this immunization regimen against infection by a mucosal route. We found that the same gp160-based vaccines were highly effective against intrarectal infection not only with the E11S clone but also with the uncloned SIVmne. Protection against mucosal infection is therefore achievable by parenteral immunization with recombinant envelope vaccines. Protection appears to correlate with high levels of SIV-specific antibodies and, in animals protected against the uncloned virus, the presence of serum-neutralizing activities. To understand the basis for the differential efficacies against the uncloned virus by the intravenous versus the intrarectal routes, we examined viral sequences recovered from the peripheral blood mononuclear cells of animals early after infection by both routes. We previously showed that the majority (85%) of the uncloned SIVmne challenge stock contained V1 sequences homologous to the molecular clone from which the vaccines were made (E11S type), with the remainder (15%) containing multiple conserved changes (the variant types). In contrast to intravenously infected animals, from which either E11S-type or the variant type V1 sequences could be recovered in significant proportions, animals infected intrarectally had predominantly E11S-type sequences. Preferential transmission or amplification of the E11S-type viruses may therefore account in part for the enhanced efficacy of the recombinant gp160 vaccines against the uncloned virus challenge by the intrarectal route compared with the intravenous route.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...