GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Astronomical Society ; 2006
    In:  The Astrophysical Journal Vol. 651, No. 1 ( 2006-11), p. 590-614
    In: The Astrophysical Journal, American Astronomical Society, Vol. 651, No. 1 ( 2006-11), p. 590-614
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    URL: Issue
    RVK:
    Language: English
    Publisher: American Astronomical Society
    Publication Date: 2006
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 246, No. 2 ( 2020-02-06), p. 66-
    Type of Medium: Online Resource
    ISSN: 1538-4365
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2020
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2019
    In:  Journal of Plasma Physics Vol. 85, No. 4 ( 2019-08)
    In: Journal of Plasma Physics, Cambridge University Press (CUP), Vol. 85, No. 4 ( 2019-08)
    Abstract: Turbulence is commonly observed in nearly collisionless heliospheric plasmas, including the solar wind and corona and the Earth’s magnetosphere. Understanding the collisionless mechanisms responsible for the energy transfer from the turbulent fluctuations to the particles is a frontier in kinetic turbulence research. Collisionless energy transfer from the turbulence to the particles can take place reversibly, resulting in non-thermal energy in the particle velocity distribution functions (VDFs) before eventual collisional thermalization is realized. Exploiting the information contained in the fluctuations in the VDFs is valuable. Here we apply a recently developed method based on VDFs, the field–particle correlation technique, to a $\unicode[STIX]{x1D6FD}=1$ , solar-wind-like, low-frequency Alfvénic turbulence simulation with well-resolved phase space to identify the field–particle energy transfer in velocity space. The field–particle correlations reveal that the energy transfer, mediated by the parallel electric field, results in significant structuring of the VDF in the direction parallel to the magnetic field. Fourier modes representing the length scales between the ion and electron gyroradii show that energy transfer is resonant in nature, localized in velocity space to the Landau resonances for each Fourier mode. The energy transfer closely follows the Landau resonant velocities with varying perpendicular wavenumber $k_{\bot }$ and plasma $\unicode[STIX]{x1D6FD}$ . This resonant signature, consistent with Landau damping, is observed in all diagnosed Fourier modes that cover the dissipation range of the simulation.
    Type of Medium: Online Resource
    ISSN: 0022-3778 , 1469-7807
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2004297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2018
    In:  Journal of Plasma Physics Vol. 84, No. 1 ( 2018-02)
    In: Journal of Plasma Physics, Cambridge University Press (CUP), Vol. 84, No. 1 ( 2018-02)
    Abstract: Understanding the removal of energy from turbulent fluctuations in a magnetized plasma and the consequent energization of the constituent plasma particles is a major goal of heliophysics and astrophysics. Previous work has shown that nonlinear interactions among counterpropagating Alfvén waves – or Alfvén wave collisions – are the fundamental building block of astrophysical plasma turbulence and naturally generate current sheets in the strongly nonlinear limit. A nonlinear gyrokinetic simulation of a strong Alfvén wave collision is used to examine the damping of the electromagnetic fluctuations and the associated energization of particles that occurs in self-consistently generated current sheets. A simple model explains the flow of energy due to the collisionless damping and the associated particle energization, as well as the subsequent thermalization of the particle energy by collisions. The net particle energization by the parallel electric field is shown to be spatially localized, and the nonlinear evolution is essential in enabling spatial non-uniformity. Using the recently developed field–particle correlation technique, we show that particles resonant with the Alfvén waves in the simulation dominate the energy transfer, demonstrating conclusively that Landau damping plays a key role in the spatially localized damping of the electromagnetic fluctuations and consequent energization of the particles in this strongly nonlinear simulation.
    Type of Medium: Online Resource
    ISSN: 0022-3778 , 1469-7807
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2004297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2017
    In:  Journal of Plasma Physics Vol. 83, No. 4 ( 2017-08)
    In: Journal of Plasma Physics, Cambridge University Press (CUP), Vol. 83, No. 4 ( 2017-08)
    Abstract: Determining the physical mechanisms that extract energy from turbulent fluctuations in weakly collisional magnetized plasmas is necessary for a more complete characterization of the behaviour of a variety of space and astrophysical plasmas. Such a determination is complicated by the complex nature of the turbulence as well as observational constraints, chiefly that in situ measurements of such plasmas are typically only available at a single point in space. Recent work has shown that correlations between electric fields and particle velocity distributions constructed from single-point measurements produce a velocity-dependent signature of the collisionless damping mechanism. We extend this work by constructing field–particle correlations using data sets drawn from single points in strongly driven, turbulent, electromagnetic gyrokinetic simulations to demonstrate that this technique can identify the collisionless mechanisms operating in such systems. The velocity-space structure of the correlation between proton distributions and parallel electric fields agrees with expectations of resonant mechanisms transferring energy collisionlessly in turbulent systems. This work motivates the eventual application of field–particle correlations to spacecraft measurements in the solar wind, with the ultimate goal to determine the physical mechanisms that dissipate magnetized plasma turbulence.
    Type of Medium: Online Resource
    ISSN: 0022-3778 , 1469-7807
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2004297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2020
    In:  Journal of Plasma Physics Vol. 86, No. 4 ( 2020-08)
    In: Journal of Plasma Physics, Cambridge University Press (CUP), Vol. 86, No. 4 ( 2020-08)
    Abstract: We apply field–particle correlations – a technique that tracks the time-averaged velocity-space structure of the energy density transfer rate between electromagnetic fields and plasma particles – to data drawn from a hybrid Vlasov–Maxwell simulation of Alfvén-ion cyclotron turbulence. Energy transfer in this system is expected to include both Landau and cyclotron wave–particle resonances, unlike previous systems to which the field–particle correlation technique has been applied. In this simulation, the energy transfer rate mediated by the parallel electric field $E_{\Vert }$ comprises approximately 60 % of the total rate, with the remainder mediated by the perpendicular electric field $E_{\bot }$ . The parallel electric field resonantly couples to protons, with the canonical bipolar velocity-space signature of Landau damping identified at many points throughout the simulation. The energy transfer mediated by $E_{\bot }$ preferentially couples to particles with $v_{tp}\lesssim v_{\bot }\lesssim 3v_{tp}$ , where $v_{tp}$ is the proton thermal speed, in agreement with the expected formation of a cyclotron diffusion plateau. Our results demonstrate clearly that the field–particle correlation technique can distinguish distinct channels of energy transfer using single-point measurements, even at points in which multiple channels act simultaneously, and can be used to determine quantitatively the rates of particle energization in each channel.
    Type of Medium: Online Resource
    ISSN: 0022-3778 , 1469-7807
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2004297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Plasma Physics, Cambridge University Press (CUP), Vol. 87, No. 3 ( 2021-06)
    Abstract: Using the field–particle correlation technique, we examine the particle energization in a three-dimensional (one spatial dimension and two velocity dimensions; 1D-2V) continuum Vlasov–Maxwell simulation of a perpendicular magnetized collisionless shock. The combination of the field–particle correlation technique with the high-fidelity representation of the particle distribution function provided by a direct discretization of the Vlasov equation allows us to ascertain the details of the exchange of energy between the electromagnetic fields and the particles in phase space. We identify the velocity-space signatures of shock-drift acceleration of the ions and adiabatic heating of the electrons arising from the perpendicular collisionless shock by constructing a simplified model with the minimum ingredients necessary to produce the observed energization signatures in the self-consistent Vlasov–Maxwell simulation. We are thus able to completely characterize the energy transfer in the perpendicular collisionless shock considered here and provide predictions for the application of the field–particle correlation technique to spacecraft measurements of collisionless shocks.
    Type of Medium: Online Resource
    ISSN: 0022-3778 , 1469-7807
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2004297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Astronomical Society ; 2016
    In:  The Astrophysical Journal Vol. 832, No. 2 ( 2016-11-23), p. L24-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 832, No. 2 ( 2016-11-23), p. L24-
    Type of Medium: Online Resource
    ISSN: 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2016
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Astronomy and Space Sciences, Frontiers Media SA, Vol. 9 ( 2022-6-29)
    Abstract: A leap forward in our understanding of particle energization in plasmas throughout the heliosphere is essential to answer longstanding questions in heliophysics, including the heating of the solar corona, acceleration of the solar wind, and energization of particles that lead to observable phenomena, such as the Earth’s aurora. The low densities and high temperatures of typical heliospheric environments lead to weakly collisional plasma conditions. Under these conditions, the energization of particles occurs primarily through collisionless interactions between the electromagnetic fields and the individual plasma particles with energies characteristic of a particular interaction. To understand how the plasma heating and particle acceleration impacts the macroscopic evolution of the heliosphere, impacting phenomena such as extreme space weather, it is critical to understand these collisionless wave-particle interactions on the characteristic ion and electron kinetic timescales. Such understanding requires high-cadence measurements of both the electromagnetic fields and the three-dimensional particle velocity distributions. Although existing instrument technology enables these measurements, a major challenge to maximize the scientific return from these measurements is the limited amount of data that can be transmitted to the ground due to telemetry constraints. A valuable, but underutilized, approach to overcome this limitation is to compute on-board correlations of the maximum-cadence field and particle measurements to improve the sampling time by several orders of magnitude. Here we review the fundamentals of the innovative field-particle correlation technique, present a formulation of the technique that can be implemented as an on-board wave-particle correlator, and estimate results that can be achieved with existing instrumental capabilities for particle velocity distribution measurements.
    Type of Medium: Online Resource
    ISSN: 2296-987X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2778829-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2017
    In:  Journal of Plasma Physics Vol. 83, No. 1 ( 2017-02)
    In: Journal of Plasma Physics, Cambridge University Press (CUP), Vol. 83, No. 1 ( 2017-02)
    Abstract: Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field–particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field–particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov–Poisson plasma. Generalizations necessary to apply the field–particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field–particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.
    Type of Medium: Online Resource
    ISSN: 0022-3778 , 1469-7807
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2004297-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...