GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 96, No. 6 ( 2022-03-23)
    Abstract: SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease. HCP treatment groups had elevated receptor binding domain (RBD) and nucleocapsid IgG titers in the serum; however, Beta VoC viral RNA burden in the lung and brain was not decreased due to HCP treatment. While mice could be protected from WA-1 or Alpha challenge with a single dose of HCP, six doses of HCP could not decrease mortality of Delta challenged mice. Overall, these data demonstrate that VoC have enhanced immune evasion and this work underscores the need for in vivo models to evaluate future emerging strains. IMPORTANCE Emerging SARS-CoV-2 VoC are posing new problems regarding vaccine and monoclonal antibody efficacy. To better understand immune evasion tactics of the VoC, we utilized passive immunization to study the effect of early-pandemic SARS-CoV-2 HCP against, Alpha, Beta, and Delta VoC. We observed that HCP from a human infected with the original SARS-CoV-2 was unable to control lethality of Alpha, Beta, or Delta VoC in the K18-hACE2 transgenic mouse model of SARS-CoV-2 infection. Our findings demonstrate that passive immunization can be used as a model to evaluate immune evasion of emerging VoC strains.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mSphere, American Society for Microbiology, Vol. 6, No. 1 ( 2021-02-24)
    Abstract: The SARS-CoV-2 pandemic is impacting the global population. This study was designed to assess the interplay of antibodies with the cytokine response in SARS-CoV-2 patients. We demonstrate that significant levels of anti-SARS-CoV-2 antibody to receptor binding domain (RBD), nucleocapsid, and spike S1 subunit of SARS-CoV-2 develop over the first 10 to 20 days of infection. The majority of patients produced antibodies against all three antigens (219/255 SARS-CoV-2 + patient specimens, 86%), suggesting a broad response to viral proteins. Antibody levels to SARS-CoV-2 antigens were different based on patient mortality, sex, blood type, and age. Analyses of these findings may help explain variation in immunity between these populations. To better understand the systemic immune response, we analyzed the levels of 20 cytokines by SARS-CoV-2 patients throughout infection. Cytokine analysis of SARS-CoV-2 + patients exhibited increases in proinflammatory markers (interleukin 6 [IL-6], IL-8, IL-18, and gamma interferon [IFN-γ] ) and chemotactic markers (IP-10 and eotaxin) relative to healthy individuals. Patients who succumbed to infection produced decreased IL-2, IL-4, IL-12, RANTES, tumor necrosis factor alpha (TNF-α), GRO-α, and MIP-1α relative to patients who survived infection. We also observed that the chemokine CXCL13 was particularly elevated in patients who succumbed to infection. CXCL13 is involved in B cell activation, germinal center development, and antibody maturation, and we observed that CXCL13 levels in blood trended with anti-SARS-CoV-2 antibody levels. Furthermore, patients who succumbed to infection produced high CXCL13 and had a higher ratio of nucleocapsid to RBD antibodies. This study provides insights into SARS-CoV-2 immunity implicating the magnitude and specificity of response in relation to patient outcomes. IMPORTANCE The SARS-CoV-2 pandemic is continuing to impact the global population, and knowledge of the immune response to COVID-19 is still developing. This study assesses the interplay of different parts of the immune system during COVID-19 disease. We demonstrate that COVID-19 patients produce antibodies to three proteins of the COVID-19 virus (SARS-CoV-2) and identify many other immunological proteins that are involved during infection. The data suggest that one of these proteins (CXCL13) may be a novel biomarker for severe COVID-19 that can be readily measured in blood. This information combined with our broad-scale analysis of immune activity during COVID-19 provides new information on the immunological response throughout the course of disease and identifies a novel potential marker for assessing disease severity.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Infection and Immunity, American Society for Microbiology, Vol. 89, No. 12 ( 2021-11-16)
    Abstract: Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 10 8 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti- B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-2-8)
    Abstract: Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis + memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti- B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: npj Vaccines, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2022-03-14)
    Abstract: SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM ® ). The vaccine is adjuvanted with Bacterial Enzymatic Combinatorial Chemistry (BECC), BECC470. Intranasal (IN) administration of BreC-CoV-2 in K18-hACE2 mice induced a strong systemic and localized immune response in the respiratory tissues which provided protection against the Washington strain of SARS-CoV-2. Protection provided after IN administration of BReC-CoV-2 was associated with decreased viral RNA copies in the lung, robust RBD IgA titers in the lung and nasal wash, and induction of broadly neutralizing antibodies in the serum. We also observed that BReC-CoV-2 vaccination administered using an intramuscular (IM) prime and IN boost protected mice from a lethal challenge dose of the Delta variant of SARS-CoV-2. IN administration of BReC-CoV-2 provided better protection than IM only administration to mice against lethal challenge dose of SARS-CoV-2. These data suggest that the IN route of vaccination induces localized immune responses that can better protect against SARS-CoV-2 than the IM route in the upper respiratory tract.
    Type of Medium: Online Resource
    ISSN: 2059-0105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2882262-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 13 ( 2023-4-14)
    Abstract: The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant Pseudomonas aeruginosa causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant P. aeruginosa infections continues to decline. Therefore, discovery and development of alternative treatments are necessary. Here, we present pre-clinical efficacy studies on an anti- P. aeruginosa therapeutic monoclonal antibody. Using hybridoma technology, we generated a monoclonal antibody and characterized its binding to P. aeruginosa in vitro using ELISA and fluorescence correlation spectroscopy. We also characterized its function in vitro and in vivo against P. aeruginosa . The anti- P. aeruginosa antibody (WVDC-5244) bound P. aeruginosa clinical strains of various serotypes in vitro , even in the presence of alginate exopolysaccharide. In addition, WVDC-5244 induced opsonophagocytic killing of P. aeruginosa in vitro in J774.1 murine macrophage, and complement-mediated killing. In a mouse model of acute pneumonia, prophylactic administration of WVDC-5244 resulted in an improvement of clinical disease manifestations and reduction of P. aeruginosa burden in the respiratory tract compared to the control groups. This study provides promising pre-clinical efficacy data on a new monoclonal antibody with therapeutic potential for P. aeruginosa infections.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2619676-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Redox Biology Vol. 17 ( 2018-07), p. 377-385
    In: Redox Biology, Elsevier BV, Vol. 17 ( 2018-07), p. 377-385
    Type of Medium: Online Resource
    ISSN: 2213-2317
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2701011-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 300, No. 1 ( 2024-01), p. 105555-
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 201, No. 5 ( 2019-03)
    Abstract: Pseudomonas aeruginosa is an opportunistic pathogen found ubiquitously in the environment and commonly associated with airway infection in patients with cystic fibrosis. P. aeruginosa strain PAO1 is one of the most commonly used laboratory-adapted research strains and is a standard laboratory-adapted strain in multiple laboratories and strain banks worldwide. Due to potential isolate-to-isolate variability, we investigated the genomic and phenotypic diversity among 10 PAO1 strains (henceforth called sublines) obtained from multiple research laboratories and commercial sources. Genomic analysis predicted a total of 5,682 genes, with 5,434 (95.63%) being identical across all 10 strains. Phenotypic analyses revealed comparable growth phenotypes in rich media and biofilm formation profiles. Limited differences were observed in antibiotic susceptibility profiles and immunostimulatory potential, measured using heat-killed whole-cell preparations in four immortalized cell lines followed by quantification of interleukin-6 (IL-6) and IL-1β secretion. However, variability was observed in the profiles of secreted molecular products, most notably, in rhamnolipid, pyoverdine, pyocyanin, Pseudomonas quinolone signal (PQS), extracellular DNA, exopolysaccharide, and outer membrane vesicle production. Many of the observed phenotypic differences did not correlate with subline-specific genetic changes, suggesting alterations in transcriptional and translational regulation. Taken together, these results suggest that individually maintained sublines of PAO1, even when acquired from the same parent subline, are continuously undergoing microevolution during culture and storage that results in alterations in phenotype, potentially affecting the outcomes of in vitro phenotypic analyses and in vivo pathogenesis studies. IMPORTANCE Laboratory-adapted strains of bacteria are used throughout the world for microbiology research. These prototype strains help keep research data consistent and comparable between laboratories. However, we have observed phenotypic variability when using different strains of Pseudomonas aeruginosa PAO1, one of the major laboratory-adopted research strains. Here, we describe the genomic and phenotypic differences among 10 PAO1 strains acquired from independent sources over 15 years to understand how individual maintenance affects strain characteristics. We observed limited genomic changes but variable phenotypic changes, which may have consequences for cross-comparison of data generated using different PAO1 strains. Our research highlights the importance of limiting practices that may promote the microevolution of model strains and calls for researchers to specify the strain origin to ensure reproducibility.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society for Pharmacology & Experimental Therapeutics (ASPET) ; 2020
    In:  Drug Metabolism and Disposition Vol. 48, No. 8 ( 2020-08), p. 645-654
    In: Drug Metabolism and Disposition, American Society for Pharmacology & Experimental Therapeutics (ASPET), Vol. 48, No. 8 ( 2020-08), p. 645-654
    Type of Medium: Online Resource
    ISSN: 0090-9556 , 1521-009X
    Language: English
    Publisher: American Society for Pharmacology & Experimental Therapeutics (ASPET)
    Publication Date: 2020
    detail.hit.zdb_id: 1500213-5
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...