GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Endocrine Society ; 2006
    In:  Endocrinology Vol. 147, No. 6 ( 2006-06-01), p. 3141-3152
    In: Endocrinology, The Endocrine Society, Vol. 147, No. 6 ( 2006-06-01), p. 3141-3152
    Type of Medium: Online Resource
    ISSN: 0013-7227 , 1945-7170
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2006
    detail.hit.zdb_id: 2011695-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Endocrinology, The Endocrine Society, Vol. 143, No. 4 ( 2002-04-01), p. 1545-1553
    Abstract: During bone formation and fracture healing there is a cross-talk between endothelial cells and osteoblasts. We previously showed that vascular endothelial growth factor A (VEGF-A) might be an important factor in this cross-talk, as osteoblast-like cells produce this angiogenic factor in a differentiation-dependent manner. Moreover, exogenously added VEGF-A enhances osteoblast differentiation. In the present study we investigated, given the coupling between angiogenesis and bone formation, whether bone morphogenetic proteins (BMPs) stimulate osteoblastogenesis and angiogenesis through the production of VEGF-A. For this we used the murine preosteoblast-like cell line KS483, which forms mineralized nodules in vitro, and an angiogenesis assay comprising 17-d-old fetal mouse bone explants that have the ability to form tube-like structures in vitro. Treatment of KS483 cells with BMP-2, -4, and -6 enhanced nodule formation, osteocalcin mRNA expression, and subsequent mineralization after 18 d of culture. This was accompanied by a dose-dependent increase in VEGF-A protein levels throughout the culture period. BMP-induced osteoblast differentiation, however, was independent of VEGF-A, as blocking VEGF-A activity by a VEGF-A antibody or a VEGF receptor 2 tyrosine kinase inhibitor did not affect BMP-induced mineralization. To investigate whether BMPs stimulate angiogenesis through VEGF-A, BMPs were assayed for their angiogenic activity. Treatment of bone explants with BMPs enhanced angiogenesis. This was inhibited by soluble BMP receptor 1A or noggin. In the presence of a VEGF-A antibody, both unstimulated and BMP-stimulated angiogenesis were arrested. Conditioned media of KS483 cells treated with BMPs also induced a strong angiogenic response, which was blocked by antimouse VEGF-A but not by noggin. These effects were specific for BMPs, as TGFβ inhibited osteoblast differentiation and angiogenesis while stimulating VEGF-A production. These findings indicate that BMPs stimulate angiogenesis through the production of VEGF-A by osteoblasts. In conclusion, VEGF-A produced by osteoblasts in response to BMPs is not involved in osteoblast differentiation, but couples angiogenesis to bone formation.
    Type of Medium: Online Resource
    ISSN: 0013-7227 , 1945-7170
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2002
    detail.hit.zdb_id: 2011695-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    S. Karger AG ; 2007
    In:  Hormone Research in Paediatrics Vol. 67, No. 4 ( 2007), p. 159-170
    In: Hormone Research in Paediatrics, S. Karger AG, Vol. 67, No. 4 ( 2007), p. 159-170
    Abstract: To gain more insight into the downstream effectors of parathyroid hormone (PTH) related peptide (PTHrP) signaling in chondrocytes, we performed microarray analysis to identify late PTHrP response genes using the chondrogenic ATDC5 cell line and studied their response in the osteoblastic KS483 cell line and explanted metatarsals. At day 8 of micromass culture, ATDC5 cells have pre-hypertrophic-like characteristics and at this time point the cells were stimulated with PTHrP for 24 and 72 h and RNA was isolated. PTHrP treatment inhibited outgrowth of cartilage matrix and decreased the expression of Col10a1 mRNA, which is in line with the inhibitory effects of PTHrP on chondrocyte differentiation. Using cDNA microarray analysis, a list of 9 genes (p 〈 10 〈 sup 〉 –3 〈 /sup 〉 ) was generated, including 3 upregulated (IGFBP4, Csrp2, and Ecm1) and 6 downregulated (Col9a1, Col2a1, Agc, Hmgn2, Calm1, and Mxd4) response genes. Four out of 9 genes are novel PTHrP response genes and 2 out of 9 have not yet been identified in cartilage. Four out of 9 genes are components of the extra-cellular matrix and the remaining genes are involved in signal transduction and transcription regulation. The response to PTHrP was validated by quantitative PCR, using the same RNA samples as labeled in the microarray experiments and RNA samples isolated from a new experiment. In addition, we examined whether these genes also reacted to PTHrP in other PTHrP responsive models, like KS483 osteoblasts and explanted metatarsals. The expression of late PTHrP response genes varied between ATDC5 chondrocytes, KS483 osteoblasts and metatarsals, suggesting that the expression of late response genes is dependent on the cellular context of the PTHrP responsive cells.
    Type of Medium: Online Resource
    ISSN: 1663-2818 , 1663-2826
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2007
    detail.hit.zdb_id: 2540224-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...