GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Endocrinology, Wiley, Vol. 88, No. 4 ( 2018-04), p. 592-600
    Abstract: Hypothalamic‐pituitary‐adrenal axis ( HPA ) activity is decreased in obese pregnancy and associates with increased foetal size. Pulsatile release of glucocorticoid hormones regulates their action in target tissues. Glucocorticoids are essential for normal foetal growth, but little is known about glucocorticoid pulsatility in pregnancy. We aimed to investigate the ultradian rhythm of glucocorticoid secretion during obese and lean pregnancy and nonpregnancy. Design Serum cortisol, cortisone, corticosterone and 11‐dehydrocorticosterone were measured by LC ‐ MS / MS from samples obtained at 10‐minute intervals between 08.00‐11.00 hours and 16.00‐19.00 hours, from 8 lean ( BMI 〈 25 kg/m 2 ) and 7 obese ( BMI   〉  35 kg/m 2 ) pregnant women between 16‐24 weeks gestation and again at 30‐36 weeks), and nonpregnant controls (lean n = 3, obese n = 4) during the luteal phase of their menstrual cycle. Interstitial fluid cortisol was measured by ELISA , from samples obtained using a portable microdialysis and automated collection device at 20‐minute intervals over 24 hours. Results Serum cortisol AUC , highest peak and lowest trough increased significantly with gestation in lean and obese pregnant compared with nonpregnant subjects. Pulsatility of cortisol was detected in interstitial fluid. In pregnant subjects, interstitial fluid pulse frequency was significantly lower with advancing gestation in obese, but not in lean. Conclusions We demonstrate cortisol pulsatility in interstitial fluid. Pulse frequency is altered with increased gestation and BMI . This may be a novel mechanism to explain decreased HPA activity in obese pregnancy.
    Type of Medium: Online Resource
    ISSN: 0300-0664 , 1365-2265
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2004597-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: British Journal of Pharmacology, Wiley, Vol. 180, No. 2 ( 2023-01), p. 174-193
    Abstract: Kcnq ‐encoded K V 7 channels (termed K V 7.1–5) regulate vascular smooth muscle cell (VSMC) contractility at rest and as targets of receptor‐mediated responses. However, the current data are mostly derived from males. Considering the known effects of sex, the oestrous cycle and sex hormones on vascular reactivity, here we have characterised the molecular and functional properties of K V 7 channels from renal and mesenteric arteries from female Wistar rats separated into di‐oestrus and met‐oestrus (F‐D/M) and pro‐oestrus and oestrus (F‐P/E). Experimental Approach RT‐qPCR, immunocytochemistry, proximity ligation assay and wire myography were performed in renal and mesenteric arteries. Circulating sex hormone concentrations were determined by liquid chromatography–tandem mass spectrometry. Whole‐cell electrophysiology was undertaken on cells expressing K V 7.4 channels in association with G‐protein‐coupled oestrogen receptor 1 (GPER1). Key Results The K V 7.2–5 activators S‐1 and ML213 and the pan‐K V 7 inhibitor linopirdine were more effective in arteries from F‐D/M compared with F‐P/E animals. In VSMCs isolated from F‐P/E rats, exploratory evidence indicates reduced membrane abundance of K V 7.4 but not K V 7.1, K V 7.5 and Kcne4 when compared with cells from F‐D/M. Plasma oestradiol was higher in F‐P/E compared with F‐D/M, and progesterone showed the converse pattern. Oestradiol/GPER1 agonist G‐1 diminished K V 7.4 encoded currents and ML213 relaxations and reduced the membrane abundance of K V 7.4 and interaction between K V 7.4 and heat shock protein 90 (HSP90), in arteries from F‐D/M but not F‐P/E. Conclusions and Implications GPER1 signalling decreased K V 7.4 membrane abundance in conjunction with diminished interaction with HSP90, giving rise to a ‘pro‐contractile state’.
    Type of Medium: Online Resource
    ISSN: 0007-1188 , 1476-5381
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2029728-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of Inflammation Vol. 20, No. 1 ( 2023-08-16)
    In: Journal of Inflammation, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2023-08-16)
    Type of Medium: Online Resource
    ISSN: 1476-9255
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2164385-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancers, MDPI AG, Vol. 12, No. 10 ( 2020-09-30), p. 2830-
    Abstract: Survivors of childhood cancer are at risk for long-term treatment-induced health sequelae, including gonadotoxicity and iatrogenic infertility. At present, for prepubertal boys there are no viable clinical options to preserve future reproductive potential. We investigated the effect of a pubertal induction regimen with gonadotrophins on prepubertal human testis xenograft development. Human testis tissue was obtained from patients with cancer and non-malignant haematological disorders (n = 6; aged 1–14 years) who underwent testis tissue cryopreservation for fertility preservation. Fresh and frozen-thawed testis fragments were transplanted subcutaneously or intratesticularly into immunocompromised mice. Graft-bearing mice received injections of vehicle or exogenous gonadotrophins, human chorionic gonadotrophin (hCG, 20 IU), and follicle-stimulating hormone (FSH, 12.5 IU) three times a week for 12 weeks. The gross morphology of vehicle and gonadotrophin-exposed grafts was similar for both transplantation sites. Exposure of prepubertal human testis tissue xenografts to exogenous gonadotrophins resulted in limited endocrine function of grafts, as demonstrated by the occasional expression of the steroidogenic cholesterol side-chain cleavage enzyme (CYP11A1). Plasma testosterone concentrations (0.13 vs. 0.25 ng/mL; p = 0.594) and seminal vesicle weights (10.02 vs. 13.93 mg; p = 0.431) in gonadotrophin-exposed recipient mice were comparable to vehicle-exposed controls. Regardless of the transplantation site and treatment, initiation and maintenance of androgen receptor (AR) expression were observed in Sertoli cells, indicating commitment towards a more differentiated status. However, neither exogenous gonadotrophins (in castrated host mice) nor endogenous testosterone (in intact host mice) were sufficient to repress the expression of markers associated with immature Sertoli cells, such as anti-Müllerian hormone (AMH) and Ki67, or to induce the redistribution of junctional proteins (connexin 43, CX43; claudin 11, CLDN11) to areas adjacent to the basement membrane. Spermatogonia did not progress developmentally but remained the most advanced germ cell type in testis xenografts. Overall, these findings demonstrate that exogenous gonadotrophins promote partial activation and maturation of the somatic environment in prepubertal testis xenografts. However, alternative hormone regimens or additional factors for pubertal induction are required to complete the functional maturation of the spermatogonial stem cell (SSC) niche.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-09-06)
    Abstract: Carbonyl Reductase 1 (CBR1) is a ubiquitously expressed cytosolic enzyme important in exogenous drug metabolism but the physiological function of which is unknown. Here, we describe a role for CBR1 in metabolism of glucocorticoids. CBR1 catalyzes the NADPH- dependent production of 20β-dihydrocortisol (20β-DHF) from cortisol. CBR1 provides the major route of cortisol metabolism in horses and is up-regulated in adipose tissue in obesity in horses, humans and mice. We demonstrate that 20β-DHF is a weak endogenous agonist of the human glucocorticoid receptor (GR). Pharmacological inhibition of CBR1 in diet-induced obesity in mice results in more marked glucose intolerance with evidence for enhanced hepatic GR signaling. These findings suggest that CBR1 generating 20β-dihydrocortisol is a novel pathway modulating GR activation and providing enzymatic protection against excessive GR activation in obesity.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Metabolites, MDPI AG, Vol. 13, No. 2 ( 2023-02-13), p. 265-
    Abstract: A number of steroids, including glucocorticoids and sex hormones, have been associated with neurodegenerative and cardiovascular conditions common in aging populations. The application of liquid chromatography tandem mass spectrometry (LC-MS/MS) steroid analysis offers an opportunity to conduct simultaneous multiplex steroid analysis within a given sample. In this paper, we describe the application of an LC-MS/MS steroid analysis method for the assessment of reference ranges of steroids in human saliva samples (200 µL) collected from older adults (age 50 years and above) enrolled in a European cohort investigating the risk for Alzheimer’s dementia. Saliva samples were prepared using supported liquid extraction (SLE) along with a calibration curve and analysed using a Waters I-Class UPLC (Ultra Performance Liquid Chromatography) and a Sciex QTrap 6500+ mass spectrometer. Mass spectrometry parameters of steroids were optimised for each steroid and a method for the chromatographic separation of 19 steroids was developed. Lower limits of quantitation (LLOQs), linearity and other method criteria were assessed. In total, data from 125 participants (500 samples) were analysed and assessed for reference ranges (64 male, 61 female). A total of 19 steroids were detected in saliva within the range of the method. There were clear diurnal patterns in most of the steroid hormones detected. Sex differences were observed for androstenedione (A4), testosterone (T), cortisone (E) and aldosterone (Aldo). In the first sample of the day, dehydroepiandrosterone (DHEA) was significantly higher in healthy volunteers compared to those with Alzheimer’s disease biomarkers. This LC-MS/MS method is suitable for the analysis of 19 steroids in saliva in adults.
    Type of Medium: Online Resource
    ISSN: 2218-1989
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662251-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 18, No. 3 ( 2023-3-20), p. e0255709-
    Abstract: Glucocorticoids inhibit angiogenesis by activating the glucocorticoid receptor. Inhibition of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) reduces tissue-specific glucocorticoid action and promotes angiogenesis in murine models of myocardial infarction. Angiogenesis is important in the growth of some solid tumours. This study used murine models of squamous cell carcinoma (SCC) and pancreatic ductal adenocarcinoma (PDAC) to test the hypothesis that 11β-HSD1 inhibition promotes angiogenesis and subsequent tumour growth. SCC or PDAC cells were injected into female FVB/N or C57BL6/J mice fed either standard diet, or diet containing the 11β-HSD1 inhibitor UE2316. SCC tumours grew more rapidly in UE2316-treated mice, reaching a larger (P 〈 0.01) final volume (0.158 ± 0.037 cm 3 ) than in control mice (0.051 ± 0.007 cm 3 ). However, PDAC tumour growth was unaffected. Immunofluorescent analysis of SCC tumours did not show differences in vessel density (CD31/alpha-smooth muscle actin) or cell proliferation (Ki67) after 11β-HSD1 inhibition, and immunohistochemistry of SCC tumours did not show changes in inflammatory cell (CD3- or F4/80-positive) infiltration. In culture, the growth/viability (assessed by live cell imaging) of SCC cells was not affected by UE2316 or corticosterone. Second Harmonic Generation microscopy showed that UE2316 reduced Type I collagen (P 〈 0.001), whilst RNA-sequencing revealed that multiple factors involved in the innate immune/inflammatory response were reduced in UE2316-treated SCC tumours. 11β-HSD1 inhibition increases SCC tumour growth, likely via suppression of inflammatory/immune cell signalling and extracellular matrix deposition, but does not promote tumour angiogenesis or growth of all solid tumours.
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2023
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Pharmaceuticals, MDPI AG, Vol. 14, No. 10 ( 2021-10-13), p. 1040-
    Abstract: Impaired glucocorticoid (GC) signaling is a significant factor in aging, stress, and neurodegenerative diseases such as Alzheimer’s disease. Therefore, the study of GC-mediated stress responses to chronic moderately stressful situations, which occur in daily life, is of huge interest for the design of pharmacological strategies toward the prevention of neurodegeneration. To address this issue, SAMP8 mice were exposed to the chronic mild stress (CMS) paradigm for 4 weeks and treated with RL-118, an 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor. The inhibition of this enzyme is linked with a reduction in GC levels and cognitive improvement, while CMS exposure has been associated with reduced cognitive performance. The aim of this project was to assess whether RL-118 treatment could reverse the deleterious effects of CMS on cognition and behavioral abilities and to evaluate the molecular mechanisms that compromise healthy aging in SAMP8 mice. First, we confirmed the target engagement between RL-118 and 11β-HSD1. Additionally, we showed that DNA methylation, hydroxymethylation, and histone phosphorylation were decreased by CMS induction, and increased by RL-118 treatment. In addition, CMS exposure caused the accumulation of reactive oxygen species (ROS)-induced damage and increased pro-oxidant enzymes—as well as pro-inflammatory mediators—through the NF-κB pathway and astrogliosis markers, such as GFAP. Of note, these modifications were reversed by 11β-HSD1 inhibition. Remarkably, although CMS altered mTORC1 signaling, autophagy was increased in the SAMP8 RL-118-treated mice. We also showed an increase in amyloidogenic processes and a decrease in synaptic plasticity and neuronal remodeling markers in mice under CMS, which were consequently modified by RL-118 treatment. In conclusion, 11β-HSD1 inhibition through RL-118 ameliorated the detrimental effects induced by CMS, including epigenetic and cognitive disturbances, indicating that GC-excess attenuation shows potential as a therapeutic strategy for age-related cognitive decline and AD.
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Physiological Society ; 2021
    In:  American Journal of Physiology-Endocrinology and Metabolism Vol. 321, No. 2 ( 2021-08-01), p. E281-E291
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 321, No. 2 ( 2021-08-01), p. E281-E291
    Abstract: Hypothalamic-pituitary-gonadal (HPG) axis suppression in exercising women can be caused by low energy availability (EA), but the impact of a real-world, multistressor training environment on reproductive and metabolic function is unknown. This study aimed to characterize reproductive and metabolic adaptation in women undertaking basic military training. A prospective cohort study in women undertaking 11-month initial military training ( n = 47) was carried out. Dynamic low-dose 1-h gonadotrophin-releasing hormone (GnRH) tests were completed after 0 and 7 mo of training. Urine progesterone was sampled weekly throughout. Body composition (dual X-ray absorptiometry), fasting insulin resistance (homeostatic modeling assessment 2, HOMA2), leptin, sex steroids, anti-Müllerian hormone (AMH), and inhibin B were measured after 0, 7, and 11 mo with an additional assessment of body composition at 3 mo. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responses were suppressed after 7 mo (both P 〈 0.001). Among noncontraceptive users ( n = 20), 65% had regular (23–35 days) cycles preenrollment, falling to 24% by 7 mo of training. Of women in whom urine progesterone was measured ( n = 24), 87% of cycles showed no evidence of ovulation. There was little change in AMH, LH, and estradiol, although inhibin B and FSH increased ( P 〈 0.05). Fat mass fluctuated during training but at month 11 was unchanged from baseline. Fat-free mass did not change. Visceral adiposity, HOMA2, and leptin increased (all P 〈 0.001). HPG axis suppression with anovulation occurred in response to training without evidence of low EA. Increased insulin resistance may have contributed to the observed pituitary and ovarian dysfunction. Our findings are likely to represent an adaptive response of reproductive function to the multistressor nature of military training. NEW & NOTEWORTHY We characterized reproductive endocrine adaptation to prolonged arduous multistressor training in women. We identified marked suppression of hypothalamic-pituitary-gonadal (HPG) axis function during training but found no evidence of low energy availability despite high energy requirements. Our findings suggest a complex interplay of psychological and environmental stressors with suppression of the HPG axis via activation of the hypothalamic-pituitary adrenal (HPA) axis. The neuroendocrine impact of nonexercise stressors on the HPG axis during arduous training should be considered.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2021
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Journal of Clinical Endocrinology & Metabolism, The Endocrine Society, Vol. 107, No. 8 ( 2022-07-14), p. e3330-e3342
    Abstract: Body fat distribution is a risk factor for obesity-associated comorbidities, and adipose tissue dysfunction plays a role in this association. In humans, there is a sex difference in body fat distribution, and steroid hormones are known to regulate several cellular processes within adipose tissue. Objective Our aim was to investigate if intra-adipose steroid concentration and expression or activity of steroidogenic enzymes were associated with features of adipose tissue dysfunction in individuals with severe obesity. Methods Samples from 40 bariatric candidates (31 women, 9 men) were included in the study. Visceral (VAT) and subcutaneous adipose tissue (SAT) were collected during surgery. Adipose tissue morphology was measured by a combination of histological staining and semi-automated quantification. Following extraction, intra-adipose and plasma steroid concentrations were determined by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Aromatase activity was estimated using product over substrate ratio, while AKR1C2 activity was measured directly by fluorogenic probe. Gene expression was measured by quantitative PCR. Results VAT aromatase activity was positively associated with VAT adipocyte hypertrophy (P valueadj  & lt; 0.01) and negatively with plasma high-density lipoprotein (HDL)-cholesterol (P valueadj  & lt; 0.01), while SAT aromatase activity predicted dyslipidemia in women even after adjustment for waist circumference, age, and hormonal contraceptive use. We additionally compared women with high and low visceral adiposity index (VAI) and found that VAT excess is characterized by adipose tissue dysfunction, increased androgen catabolism mirrored by increased AKR1C2 activity, and higher aromatase expression and activity indices. Conclusion In women, increased androgen catabolism or aromatization is associated with visceral adiposity and adipose tissue dysfunction.
    Type of Medium: Online Resource
    ISSN: 0021-972X , 1945-7197
    RVK:
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2022
    detail.hit.zdb_id: 2026217-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...