GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Nature Communications Vol. 7, No. 1 ( 2016-08-05)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-08-05)
    Abstract: The transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cell, Elsevier BV, Vol. 54, No. 4 ( 2014-05), p. 651-662
    Type of Medium: Online Resource
    ISSN: 1097-2765
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 2001948-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Genome Biology, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2020-12)
    Abstract: 3′-Untranslated regions (3′UTRs) play crucial roles in mRNA metabolism, such as by controlling mRNA stability, translation efficiency, and localization. Intriguingly, in some genes the 3′UTR is longer than their coding regions, pointing to additional, unknown functions. Here, we describe a protein-coding function of 3′UTRs upon frameshift-inducing alternative splicing in more than 10% of human and mouse protein-coding genes. Results 3′UTR-encoded amino acid sequences show an enrichment of PxxP motifs and lead to interactome rewiring. Furthermore, an elevated proline content increases protein disorder and reduces protein stability, thus allowing splicing-controlled regulation of protein half-life. This could also act as a surveillance mechanism for erroneous skipping of penultimate exons resulting in transcripts that escape nonsense mediated decay. The impact of frameshift-inducing alternative splicing on disease development is emphasized by a retinitis pigmentosa-causing mutation leading to translation of a 3′UTR-encoded, proline-rich, destabilized frameshift-protein with altered protein-protein interactions. Conclusions We describe a widespread, evolutionarily conserved mechanism that enriches the mammalian proteome, controls protein expression and protein-protein interactions, and has important implications for the discovery of novel, potentially disease-relevant protein variants.
    Type of Medium: Online Resource
    ISSN: 1474-760X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2040529-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: RNA, Cold Spring Harbor Laboratory, Vol. 23, No. 12 ( 2017-12), p. 1796-1806
    Abstract: Recent work has identified cancer-associated U2AF35 missense mutations in two zinc-finger (ZnF) domains, but little is known about Q157R/P substitutions within the second ZnF. Surprisingly, we find that the c.470A 〉 G mutation not only leads to the Q157R substitution, but also creates an alternative 5′ splice site (ss) resulting in the deletion of four amino acids (Q157Rdel). Q157P, Q157R, and Q157Rdel control alternative splicing of distinct groups of exons in cell culture and in human patients, suggesting that missplicing of different targets may contribute to cellular aberrations. Our data emphasize the importance to explore missense mutations beyond altered protein sequence.
    Type of Medium: Online Resource
    ISSN: 1355-8382 , 1469-9001
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2017
    detail.hit.zdb_id: 1475737-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2007
    In:  RNA Vol. 13, No. 8 ( 2007-08), p. 1155-1171
    In: RNA, Cold Spring Harbor Laboratory, Vol. 13, No. 8 ( 2007-08), p. 1155-1171
    Abstract: Alternative splicing is widely believed to have a major impact on almost all biological processes since it increases proteome complexity and thereby controls protein function. Recently, gene targeting in mice has been used to create in vivo models to study the regulation and consequences of alternative splicing. The evidence accumulated so far argues for a nonredundant, highly specific role of individual splicing factors in mammalian development, and furthermore, demonstrates the importance of distinct protein isoforms in vivo. In this review, we will compare phenotypes of mouse models for alternative splicing to crystallize common themes and to put them into perspective with the available in vitro data.
    Type of Medium: Online Resource
    ISSN: 1355-8382 , 1469-9001
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2007
    detail.hit.zdb_id: 1475737-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: RNA, Cold Spring Harbor Laboratory, Vol. 18, No. 5 ( 2012-05), p. 1029-1040
    Abstract: The formation and execution of a productive immune response requires the maturation of competent T cells and a robust change in cellular activity upon antigen challenge. Such changes in cellular function depend on regulated alterations to protein expression. Previous research has focused on defining transcriptional changes that regulate protein expression during T-cell maturation and antigen stimulation. Here, we globally analyze another critical process in gene regulation during T-cell stimulation, alternative splicing. Specifically, we use RNA-seq profiling to identify 178 exons in 168 genes that exhibit robust changes in inclusion in response to stimulation of a human T-cell line. Supporting an important role for the global coordination of alternative splicing following T-cell stimulation, these signal-responsive exons are significantly enriched in genes with functional annotations specifically related to immune response. The vast majority of these genes also exhibit differential alternative splicing between naive and activated primary T cells. Comparison of the responsiveness of splicing to various stimuli in the cultured and primary T cells further reveals at least three distinct networks of signal-induced alternative splicing events. Importantly, we find that each regulatory network is specifically associated with distinct sequence features, suggesting that they are controlled by independent regulatory mechanisms. These results thus provide a basis for elucidating mechanisms of signal pathway–specific regulation of alternative splicing during T-cell stimulation.
    Type of Medium: Online Resource
    ISSN: 1355-8382 , 1469-9001
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2012
    detail.hit.zdb_id: 1475737-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 37, No. 7 ( 2017-04-01)
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2017
    detail.hit.zdb_id: 1474919-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 49, No. 20 ( 2021-11-18), p. 11708-11727
    Abstract: RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Oncogene, Springer Science and Business Media LLC, Vol. 41, No. 40 ( 2022-09-30), p. 4560-4572
    Abstract: Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC -induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC -overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008404-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 1486-1486
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1486-1486
    Abstract: Abstract 1486 Poster Board I-509 Hematopoietic differentiation has to be tightly regulated since uncontrolled or exaggerated development of blood cells may lead to the development of leukemia or autoimmune diseases. Many mechanisms exist to control hematopoiesis on a molecular level, including the regulation of transcription, which has been intensely studied. However, new evidence suggests the process of alternative splicing to be an important regulator of the maturation and activation of blood- and immune effector cells. One of the factors that has been identified as a potential regulator of the immune response and controls alternative splicing is “heterogenous nuclear ribonucleoprotein L” (hnRNP L). This factor affects among others the alternative splicing of the CD45 gene, which encodes the major tyrosine phosphatase expressed on all hematopoietic cells. To investigate the biological role of hnRNP L as a regulator of alternative splicing in hematopoiesis, we have generated conditional hnRNP L knockout (KO) mice carrying floxed alleles that can be deleted by co expression of Cre recombinase. Both the inducible MxCre transgene or Vav-Cre transgene, which is active in all hematopoietic cells were introduced into hnRNP Lfl/fl mice. We found that the conditional deletion of hnRNP L by the Vav Cre transgene led to early mortality before birth (at stage E17.5) and flow cytometric analysis of fetal liver of hnRNP Lfl/fl, Vav-Cre mice or bone marrow from pIpC induced hnRNP Lfl/fl Mx-Cre mice showed a deficit in erythrocyte maturation. In addition, fetal thymi from hnRNP Lfl/fl X Vav-Cre mice were severely reduced in cellularity and showed disturbed T cell maturation. Moreover, the deletion of hnRNP L results in reduced numbers of Lin−Sca1+ckit+ (LSK) cells, common lymphoid progenitors (CLPs), common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs) and megakaryocyte-erythrocyte progenitors (MEPs). Strikingly, while most of the progenitors and the short-term hematopoietic stem cells (HSCs) were affected by the deletion of hnRNP L, the population of long term HSCs was not reduced. We found a high percentage of Annexin V positive cells in the LSK population suggesting that the loss of progenitors and short term HSCs in hnRNP L deficient mice is due to an accelerated cell death. To test whether stem cells lacking hnRNP L were still functional, we sorted Lin−Sca1+ckit+ (LSK) cells and cultured them on either methylcellulose or the feeder cell lines OP9 and OP9-DL1. The co-culture with OP9 or OP9-DL1 cells demonstrated that hnRNP L−/− LSK cells had lost their potential to differentiate into B and T lymphocytes. Similarly, hnRNP L deficient LSK cells were unable to give rise to lymphoid, myeloid or erythroid colonies on methylcellulose. This suggests that hnRNP L is required to maintain not only the numbers of hematopoietic stem cells, but also their ability for multilineage differentiation. We conclude that the regulation of alternative splicing is an essential component of the regulatory network required to maintain hematopoietic differentiation and the functional integrity of hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...