GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: British Journal of Haematology, Wiley, Vol. 172, No. 3 ( 2016-02), p. 428-438
    Abstract: The introduction of Rituximab has improved the outcome and survival rates of Burkitt lymphoma ( BL ). However, early relapse and refractoriness are current limitations of BL treatment and new biological factors affecting the outcome of these patients have not been explored. This study aimed to identify the presence of genomic changes that could predict the response to new therapies in BL . Forty adolescent and adult BL patients treated with the Dose‐Intensive Chemotherapy Including Rituximab (Burkimab) protocol (Spanish Programme for the Study and Treatment of Haematological Malignancies; PETHEMA ) were analysed using array‐based comparative genomic hybridization ( CGH ). In addition, the presence of TP 53, TCF 3 (E2A), ID 3 and GNA 13 mutations was assessed by next‐generation sequencing ( NGS ). Ninety‐seven per cent of the patients harboured genomic imbalances. Losses on 11q, 13q, 15q or 17p were associated with a poor response to Burkimab therapy ( P  =   0·038), shorter progression‐free survival ( PFS ; P  =   0·007) and overall survival ( OS ; P  =   0·009). The integrative analysis of array‐ CGH and NGS showed that 26·3% (5/19) and 36·8% (7/19) of patients carried alterations in the TP 53 and TCF 3 genes, respectively. TP 53 alterations were associated with shorter PFS ( P  =   0·011) while TCF 3 alterations were associated with shorter OS ( P =  0·032). Genetic studies could be used for risk stratification of BL patients treated with the Burkimab protocol.
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: American Journal of Hematology, Wiley, Vol. 91, No. 10 ( 2016-10), p. 978-983
    Abstract: Despite significant advances in molecular genetic approaches, fluorescence in situ hybridization (FISH) remains the gold standard for the diagnostic evaluation of genomic aberrations in patients with chronic lymphocytic leukemia (CLL). Efforts to improve the diagnostic utility of molecular cytogenetic testing have led to the expansion of the traditional 4‐probe CLL FISH panel. Not only do these efforts increase the cost of testing, they remain hindered by the inherent limitations of FISH studies ‐ namely the inability to evaluate genomic changes outside of the targeted loci. While array‐based profiling and next generation sequencing (NGS) have critically expanded our understanding of the molecular pathogenesis of CLL, these methodologies are not routinely used by diagnostic laboratories to evaluate copy number changes or the mutational profile of this disease. Mitogenic stimulation of CLL specimens with CpG‐oligonucleotide (CpG‐ODN) has been identified as a reliable and reproducible means of obtaining a karyotype, facilitating a low‐resolution genome‐wide analysis. Across a cohort of 1255 CpG‐ODN‐stimulated CLL specimens, we describe the clinical utility associated with the combinatorial use of FISH and karyotyping. Our testing algorithm achieves a higher diagnostic yield (∼10%) through the detection of complex karyotypes, well‐characterized chromosomal aberrations not covered by the traditional CLL FISH panel and through the detection of concurrent secondary malignancies. Moreover, the single cell nature of this approach permits the evaluation of emerging new clinical concepts including clonal dynamics and clonal evolution. This approach can be broadly applied by diagnostic laboratories to improve the utility of traditional and molecular cytogenetic studies of CLL. Am. J. Hematol. 91:978–983, 2016. © 2016 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0361-8609 , 1096-8652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1492749-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 103, No. 1 ( 2018-01), p. 148-162
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2018
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: British Journal of Haematology, Wiley, Vol. 188, No. 5 ( 2020-03), p. 605-622
    Abstract: The landscape of medical sequencing has rapidly changed with the evolution of next generation sequencing (NGS). These technologies have contributed to the molecular characterization of the myelodysplastic syndromes (MDS) and chronic myelomonocytic leukaemia (CMML), through the identification of recurrent gene mutations, which are present in 〉 80% of patients. These mutations contribute to a better classification and risk stratification of the patients. Currently, clinical laboratories include NGS genomic analyses in their routine clinical practice, in an effort to personalize the diagnosis, prognosis and treatment of MDS and CMML. NGS technologies have reduced the cost of large‐scale sequencing, but there are additional challenges involving the clinical validation of these technologies, as continuous advances are constantly being made. In this context, it is of major importance to standardize the generation, analysis, clinical interpretation and reporting of NGS data. To that end, the Spanish MDS Group (GESMD) has expanded the present set of guidelines, aiming to establish common quality standards for the adequate implementation of NGS and clinical interpretation of the results, hoping that this effort will ultimately contribute to the benefit of patients with myeloid malignancies.
    Type of Medium: Online Resource
    ISSN: 0007-1048 , 1365-2141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 106, No. 8 ( 2020-07-16), p. 2215-2223
    Abstract: Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to secondary acute myeloid leukemia (sAML). However, the mutational dynamics and clonal evolution underlying disease progression are poorly understood at present. To elucidate the mutational dynamics of pathways and genes occurring during the evolution to sAML, next generation sequencing was performed on 84 serially paired samples of MDS patients who developed sAML (discovery cohort) and 14 paired samples from MDS patients who did not progress to sAML during follow-up (control cohort). Results were validated in an independent series of 388 MDS patients (validation cohort). We used an integrative analysis to identify how mutations, alone or in combination, contribute to leukemic transformation. The study showed that MDS progression to sAML is characterized by greater genomic instability and the presence of several types of mutational dynamics, highlighting increasing (STAG2) and newly-acquired (NRAS and FLT3) mutations. Moreover, we observed cooperation between genes involved in the cohesin and Ras pathways in 15-20% of MDS patients who evolved to sAML, as well as a high proportion of newly acquired or increasing mutations in the chromatin-modifier genes in MDS patients receiving a disease-modifying therapy before their progression to sAML.
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2020
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3129-3129
    Abstract: Background: Chromosome 14q32 rearrangements involving the immunoglobulin heavy chain gene (IGH) affect less than 5% of chronic lymphocytic leukemia (CLL) patients. Their clinical course is aggressive and the outcome, worse than other CLL subtypes (Cavazzini et al, 2008; Gerrie et al, 2012). However, the biology of CLL showing IGH rearrangements (CLL-IGHR) is not completely defined. The identification of novel recurrent mutations in CLL by next generation-sequencing (NGS) has offered a more comprehensive view into the genomic landscape of the disease and improved the prognostication of CLL. Thus, mutational analysis might be especially useful in those patients with uncertain prognosis, such as those carrying IGH rearrangements. Aim: To analyze the mutational profile of CLL-IGHR patients by targeted NGS in order to improve our understanding of the genetic underpinnings of this subgroup. Methods: The study was based on 899 CLL patients, well characterized at cytogenetic, biological and clinical level, forty-two of them (4.7%) showing IGH rearrangements. Targeted NGS was performed in 231 CLL samples: 117 with 13q deletion, 27 with 11q deletion, 26 trisomy 12, 42 showing IGH rearrangements and the remaining 19 without any cytogenetic alteration. CD19+ B cells were isolated and DNA extracted. SureSelectQXT targeted enrichment technology and a custom-designed panel (MiSeq, Illumina), including 54 CLL-related and recurrent mutated genes, was carried out. The panel yielded 100x or greater coverage on 97% of the genomic regions of interest and the mean coverage obtained was 600x. Mutations were detected down to 3% allele frequency. Results: The mutational analysis of CLL-IGHR patients identified a total of 72 mutations in 32 genes. Seventy-one percent of patients (30/42) harbored at least one mutation. The most frequently mutated genes in this cohort were NOTCH1 (28.6%), POT1 (14.3%), TP53 (9.5%), SF3B1 (7%), BRAF (7%), EGR2 (7%), IGLL5 (7%) and MGA (7%), followed by BCL2, HIST1H1E and FBXW7 (4.8%), uncommonly mutated genes in CLL at these frequencies (Table 1). In fact, mutations in NOTCH1, BRAF, EGR2, BCL2, HIST1H1E and FBXW7 were significantly associated with CLL-IGHR patients (p=0.013, p=0.003, p=0.021, p=0.038, p=0.038 and p=0.021 respectively). In terms of time to the first therapy (TFT), CLL-IGHR had an intermediate-negative impact (median TFT=24 months) compared to the presence of cytogenetic alterations associated with good prognosis such as 13q deletions (median TFT 〉 120 months; p 〈 0.0001) (Figure 1A). Furthermore, the presence of mutations in the most frequently mutated genes (NOTCH1, POT1, TP53, SF3B1 or BRAF) within patients with IGH rearrangements had a negative clinical impact in the TFT and allowed us to refine the prognosis of this subgroup. Thus, the median TFT of patients with mutations was 1 month while the median TFT of patients without mutations was 14 months (p=0.014) (Figure 1B). A total of 17 out of 42 CLL-IGHR patients (40.5%) carried the t(14;18). Interestingly, patients with t(14;18) were characterized by: 1) A lower mutation frequency (average of mutations/patient=1.05) than the rest of rearrangements with unknown partners (average=2.16; p=0.039), and 2) The presence of mutations in BCL2 (11%) and HIST1H1E (11%). By contrast, CLL-IGHR without BCL2 rearrangement showed mutations in POT1 (20%), TP53 (16%), SF3B1 (12%) and BRAF (12%). Moreover, t(14;18) was significantly associated with good prognosis markers such as the mutated status of the variable region of the immunoglobulin genes (IGHV-M) (p=0.002). However, there was no significant difference in terms of TFT between patients with t(14;18) and patients with other IGH rearrangements (p=0.27). Conclusions: CLL patients with IGH rearrangements showed: i. A high gene mutation frequency; ii. A distinct mutational profile, with recurrent mutations in POT1, EGR2, BRAF, IGLL5 and MGA genes; iii. An adverse clinical outcome refined by the negative effect of genetic mutations. iv. Patients with t(14;18) presented a lower mutation frequency than the rest of rearrangements, carrying mutations in BCL2 and HIST1H1E, and associated with good-prognosis markers such as IGHV-M. Funding:PI15/01471; CIBERONC CB16/12/00233; FEHH-Janssen(MHS); JCyL(MQÁ) Disclosures Mateos: Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy, Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1776-1776
    Abstract: Abstract 1776 Array-based sequence capture (Roche NimbleGen) followed by next-generation sequencing (Roche GS FLX Titanium sequencing platform) was used to analyze genetic variations in 93 genes relevant in CLL and two chromosomal regions: 13q14.3 and 17p13.1. CD19+ cells from 4 patients with CLL and 4 patients with other hematological malignancies (used as controls) were studied. A custom-made data analysis pipeline was used to annotate detected variants, including known single-nucleotide polymorphisms (SNPs), amino acid consequences, genomic location and miRNA binding sites. The enrichment assay followed by NGS allowed the detection of over 1600 variations/sample (median 1721, range 1618–1823). All putative variants were first compared with published single nucleotide polymorphism (SNP) data (dbSNP build 130) and most of the variants detected were identified as known SNPs. Overall, 10% of variants detected in each sample were variations not previously described. Interestingly, a 4bp insertion/deletion polymorphism (rs2307842) in the 3′UTR of HSP90B1, target site for miR-223, was detected. There is an increasing evidence suggesting that SNPs in the 3′UTR targeted by miRNAs (known as miRSNPs) are associated with diseases by affecting gene expression. We hypothesized that this ‘GACT’ deletion disrupts the binding site for miR-223 thereby increasing the translation of HSP90B1 and we confirmed that miR-223 regulates HSP90B1 expression by 3′UTR reporter assays. The relative luciferase activity of the construct with wild-type 3′UTR (WT-3′UTR) was significantly repressed by 31% following miR-223 transfection (p 〈 0.05). However, the presence of rs2307842 polymorphism in 3′UTR of HSP90B1 (VAR-3′UTR) abolished this suppression, suggesting that miR-223 directly binds to this site. We also validated HSP90B1 as a target gene of miR223 by transfecting MM1S and H929 cell lines with miR-223/NC mimics and then measuring HSP90B1 expression by semi-quantitative PCR and Western blot. Exogenous expression of miR-223 downregulated the expression levels of HSP90B1 in H929 cell line (WT-3′UTR) in both mRNA (p 〈 0.05) and protein levels. By contrast, HSP90B1 expression was not modified in MM1S cell line (VAR-3′UTR). To evaluate the clinical impact of HSP90B1 3′UTR polymorphism, we expanded the study to 109 additional patients with CLL and 32 healthy controls. Sequencing of the HSP90B1 3′UTR region was performed by pyrosequencing (PyroMark Q24 system, Qiagen). The rs2307842 was detected in 27/109 (25%) patients and 8/32 (25%) healthy controls, as expected. Overall, we did not find any significant relationship between rs2307842 and clinical characteristics of CLL patients. To gain insight into its influence on gene expression, we measured HSP90B1 mRNA levels in paired samples (tumoral and normal) from CLL patients with rs2307842 (VAR-CLLs, n=6) and wild-type (WT-CLLs, n=12). PCR results showed that B lymphocytes (tumoral fraction) from VAR-CLLs have a higher expression of HSP90B1 than B lymphocytes from WT-CLLs (P=0.002) and also from the normal cells of the same patients (VAR-CLLs) (P=0.011). However, in WT-CLLs, no changes in mRNA expression were observed between tumor and normal fractions, being HSP90B1 mRNA levels similar to the normal fraction of VAR-CLLs. Thus, rs2307842 determined HSP90B1 overexpression only in the tumor fraction of the CLL patients with the polymorphism. Downregulation of miR-223 has prognostic significance in CLL. However, there is no evidence of the pathogenetic mechanism of this miRNA in CLL patients, and no target has been proposed or validated for miR-223 in CLL until date. Thus, this work provides novel information about how the downregulation of miR-223 can be determining the poor outcome of CLL patients, maybe through upregulation of HSP90B1 expression. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2871-2871
    Abstract: Abstract 2871 Deletion at 13q14 (13q) is the most common genomic aberration in CLL. It is present in more than 50% of cases, and is the sole documented cytogenetic abnormality in 36% of the patients. These latter cases are known to have a more favorable clinical course. However, recent data from our group and others, suggest that patients with CLL and 13q deletion as the only FISH abnormality could have a different outcome depending on the number of cells displaying this aberration. Thus CLL patients with a high number of 13q cells usually had both shorter overall survival and shorter time to first therapy. However, to the best of our knowledge the molecular characteristics of these patients have not been so far analyzed in detail. A total of 102 samples were selected for the study, 32 of which served as a validation cohort. A complete immunophenotypic analysis by flow cytometry and FISH studies were carried out in all cases. The median age was 68 years (range, 35 to 90 years). For the purpose of the study, only samples with one cytogenetic abnormality were included. For the gene expression profile analysis, according to our previous results, two groups of patients with 13q were compared: those in whom 80% or more of cells showed 13q (13qH) and those in whom fewer than 80% of cells showed 13q losses (13qL). The distribution of cases in the study cohort was: 13qH (n=25; 36%), 13qL (n=27; 39%), normal FISH (nCLL, n=8; 11%) and 17p/11q (n= 10; 14%); and in the validation cohort: 13qH (n=7; 22%), 13qL (n=11; 34%) and nCLL (n=9; 28%). Peripheral blood mononuclear cells (PBMCs) were isolated from fresh peripheral blood samples using Ficoll gradient, snapfrozen and stored at 80°C. For the validation cohort, CD19positive B cells were purified by magnetically activated cell sorting (MACS) CD19 MicroBeads resulting in a 〉 98% purity, as analyzed by flow cytometry. CD19positive normal B cells from peripheral blood of five healthy donors served as controls. All samples were hybridized with the Affymetrix Human Exon arrays 1.0 ST. A total of 3 450 genes significantly distinguished 13qH from 13qL patients, defining the 13qH signature. To determine the biological significance of the deregulated genes, a further analysis was carried out, revealing that apoptosis, BCR and NFkB signaling were the most significant affected pathways in 13qH CLL patients. Moreover, 13qH CLL patients were also characterized by a striking overrepresentation of deregulated miRNAs. A total of 15 miRNAs were deregulated in 13qH relative to 13qL patients. HsamiR155 was the most highly upregulated miRNA (Rfold=3.70), while hsamiR223 was the most significantly downregulated (Rfold=0.10). The posttranscriptional regulatory network of miRNA and genes in CLL patients with more than 80% of 13q cells was carried out by analyzing the miRNAmRNA relationships and the pathway analysis demonstrated that B cell receptor signaling, PI3K signaling and NFkB signaling were among the most strongly affected pathways in 13qH patients, highlighting the importance of miRNA regulation in CLL. The influence of other factors with prognostic relevance in CLL, such as IGVH mutational status, was discarded. We also analyzed the gene signature of CLL high risk cytogenetic subgroups in comparison with 13q patients. Surprisingly, our results suggest that some of the biological characteristics of 13qH CLL patients were similar to those of highrisk cytogenetic subgroups, since they share the deregulation of several key signaling pathways. To validate the differences observed between the subgroups of 13q CLL patients and get a visualization of these, we applied the Principal Component Analysis (PCA) in an independent series of patients. The expression pattern of CD19+ cells from CLL patients was notably different from the gene expression profile of CD19+ cells from healthy donors. Thus, CLL patients with a high number of 13q cells can be differentiated based on their expression profile. By contrast, the gene expression of B lymphocytes from 13qL and normal FISH subgroups was similar. Therefore, this study provides new evidences regarding the heterogeneity of 13q deletion in CLL patients. Thus an overexpression of BCR and NFKB patways and as well as a deregulation of the balance between the proliferative and apoptotic signals and miRNA expression are involved in cases with higher percentages of 13q- cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    In: Nature, Springer Science and Business Media LLC, Vol. 600, No. 7889 ( 2021-12-16), p. 472-477
    Abstract: The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19 1,2 , host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases 3–7 . They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...