GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 2748-2748
    Abstract: Abstract 2748 The tyrosine kinase inhibitors (TKIs) Imatinib mesylate (IM, Gleevec, Glivec) and nilotinib (NI, Tasigna, AMN) are currently used in treatment of chronic myeloid leukaemia (CML). IM has been described to influence the function and differentiation of antigen presenting cells, to inhibit the effector function of T lymphocytes and to decrease the immunogenicity of CML cells by downregulation of tumor associated antigens. In the present study, we analyzed the effect of IM and NI on proteasomal activity in IM-sensitive or IM/NI- resistant CML cells as well as in patient samples using a biotinylated active site-directed probe, which, covalently binds and labels proteasomal subunits beta-1, beta-2 and beta-5 and their immunosubunit counterparts beta-1i, beta-2i and beta-5i, in an activity-dependent fashion. Incubation of CML cell lines and primary CML cells with IM or NI resulted in a concentration dependent inhibition of proteasomal activity that was independent of BCR-ABL, as these effects were observed in TKI-resistant and BCR-ABL negative cells. In addition, these effects were not due to a downregulation of the expression of proteasomal subunits as analyzed by Western blot and independent of apoptosis induction. To further analyze and confirm the direct effects of TKIs on proteasomal function, isolated h20S proteasome assays were performed. In line with the results of activity site labeling, IM or NI treated isolated h20S, showed a reduced concentration-dependent activity, as measured by fluorometric cleavage of the substrate suc-leu-leu-val-tyr-AMC. Furthermore, incubation of purified h20S proteasomes with serine or tyrosine specific phosphatases reduced the proteasomal activity as observed with the TKIs, indicating that serine and tyrosine phosphorylation plays an important role in the regulation of the proteasome function. In the next set of experiments we analyzed the effects of IM and NI on the proteasomal generation of antigenic peptides derived from BCR-ABL. In in vitro digestion experiments using purified proteasomes in the presence of NI or IM, we found that the treatment of immunoproteasome i20S with the TKIs almost completely abolished the generation of the long precursor peptides for the HLA-A3/A11 (KQSSKALQR) and the HLA-B8 (GFKQSSKAL) epitopes, while the cleavage of the short peptides significantly increased. Both epitopes have been shown to be naturally processed and presented in CML cells. However, we show that both epitopes can be generated as N-terminal elongated precursors in vitro by both constitutive and immuno-20S proteasomes. Interestingly, in all performed experiments NI was more effective as compared to IM, while other TKIs had no effect. Our results demonstrate that treatment with IM and NI can affect the immunogenicity of malignant cells by affecting proteasomal degradation of cytosolic antigens, thereby modulating the repertoire of presented antigens. These strong effects of the TKIs IM and NI on proteasomal activity might be a result of changes in the phosphorylation of proteasomal subunits akin to the recently showed endogenous phosphorylation sites of the mammalian 20S proteasome. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 21 ( 2013-11-15), p. 2281-2281
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 2281-2281
    Abstract: Recent discoveries of activating JAK mutations in patients with myeloproliferative diseases (MPNs) coupled with the so far known biology of JAKs in cytokine signaling provided the rationale for targeting these kinases in MPNs. Ruxolitinib (INCB018424) is the first JAK1/JAK2 inhibitor approved for treatment of patients with myelofibrosis (MF). Although ruxolitinib shows limited anti-clonal activity, a profound improvement of quality of life and splenomegaly in MF patients is observed and linked to a substantial reduction of MF-associated circulating pro-inflammatory cytokines and pro-angiogenic factors. JAK/STAT-signalling is known to be involved in the regulation of various immune cells including CD4+ T cells, which critically orchestrate inflammatory responses. To better understand how ruxolitinib is modulating CD4+ T cell response, we here provide an in depth analysis of CD4+ T cell function upon ruxolitinib exposure. Methods Highly purified CD4+ T cells isolated from healthy human PBMC from buffy coats were stimulated for 4 days with i) plate bound anti-CD3, ii) plate bound anti-CD3 and soluble anti-CD28 antibodies, iii) IL-2 in the presence of increasing concentrations of ruxolitinib (0.1µM – 10µM) or the respective vehicle control (DMSO). Phenotype and function were analyzed by flow cytometry. Cytokine production was quantified either by intracellular staining and subsequent flow cytometry or by flow-based bead assays (Human Th1/Th2 11plex FlowCytomix Multiplex). Proliferation was detected by CFSE dilution analysis using FACS. CD4+CD62L+ T cells obtained from C57BL/6 mice were isolated by using the CD4+CD62L+ T Cell Isolation Kit (Miltenyi Biotec) and subsequently differentiated into TH1, TH2, TH9, TH17 and iTreg. Polarization into the different CD4+ T cell subsets was induced by cytokine/antibody cocktails (TH1: IL-12 and anti-IL4; TH2: IL-4 and anti-IL12; TH9: IL-4, TGF-β and anti-IFNγ; iTreg: IL-2 and TGFβ; TH17: IL-6, TGFβ, IL-1b, anti-IFNγ and anti-IL4) together with anti-CD3 and anti-CD28. For analysis of apoptosis/necrosis induction, annexin/propidium iodide staining was applied. Signalling events were analyzed by phospho-flow technology to evaluate ruxolitinib-mediated changes of TCR- and/or cytokine-induced signalling cascades (using pS6, pSTAT1, pSTAT3, pSTAT5, pERK, pAKT, pP38, pFos, pJun and pZAP70 antibodies). Results CD4+ T cell proliferation is significantly and dose-dependently suppressed by ruxolitinib when T cells were activated by each of the three conditions tested. Of note, we could not detect any changes in the viability of ruxolitinib-exposed CD4+ T cells. In line with previous studies, production of pro-inflammatory cytokines such as IL-1β, IL-5, IL-6 and TNF-α were dose-dependently inhibited in ruxolitinib-exposed CD4+ T cells, although expression of the pro-inflammatory IL-8 was increased in a dose-dependent manner. Interestingly, despite the complete proliferation block, we also observed an increase in IL-2 and IFNγ particularly at the lower ruxolitinib concentrations (0.1μM) followed by a dose dependent reduction at higher dose-levels (10µM). After short-term activation of ruxolitinib-exposed CD4+ T cells by anti-CD3 and anti-CD28, proximal TCR signaling events (phosphorylation of SLP76 and ZAP70) were not affected, whereas a clear down-regulation of IL-2 induced STAT5 phosphorylation could be detected. After wash-out the ruxolitinib-induced inhibitory effects on CD4+ T cell function were fully reversible, as shown by induction of the T cell activation markers CD25 and CD69. Finally, we differentiated murine CD4+ naïve T cells into the various T Helper cell subsets and could provide clear evidence that the differentiation capacity of naïve CD4+ T cells into TH1, TH9, TH17 and iTreg was markedly reduced, whereas inhibition of Th2 differentiation was only marginally affected. The anti-inflammatory effects of ruxolitinib are currently tested in a TH9-dependent lung inflammation model in mice. Conclusion We could show that ruxolitinib potently affects CD4+ T cell biology. These data provide a rationale for testing JAK inhibitors in diseases triggered by hyperactive CD4+ T cells, such as autoimmune diseases. However, they also provide an explanation for the increased infection rates (i.e. viral reactivation and urinary tract infection) seen in ruxolitinib-treated patients. Disclosures: Wolf: Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 105, No. 8 ( 2005-04-15), p. 3199-3205
    Abstract: RNA transfection of dendritic cells (DCs) was shown to be highly efficient in eliciting CD8+ and CD4+ T-cell responses. However, antigen presentation pathways involved in generation of human leukocyte antigen (HLA) class I and class II peptides have remained elusive. To analyze this we incubated mucin 1 (MUC1) RNA-transfected DCs with compounds known to inhibit HLA class I presentation and used these cells in chromium 51 (51Cr)–release assays. As effectors, we used cytotoxic T lymphocyte (CTL) lines specific for the MUC1 peptides M1.1 and M1.2. We observed that the presentation of HLA-A*02 epitopes is inhibited by brefeldin A and lactacystin. To determine the requirement of a functional transporter associated with antigen processing (TAP), we cotransfected DCs with MUC1 and infected cell peptide 47 (ICP47) RNA. ICP47 could only inhibit the presentation of the M1.1 but not the M1.2 peptide, indicating that this epitope derived from the signal sequence is presented independently of TAP. Cocultivation of MUC1 RNA-transfected DCs with MUC1-specific CD4+ T lymphocytes revealed that the presentation of HLA class II peptides is sensitive to proteasomal inhibitors and brefeldin A. Furthermore, the presentation pathway requires lysosomal and endosomal processing and is mediated by autophagy. Our results demonstrate that the efficient presentation of cytosolic proteins on major histocompatibility complex (MHC) class II combines the proteolytic and lysosomal pathways.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 23 ( 2013-11-28), p. 3843-3844
    In: Blood, American Society of Hematology, Vol. 122, No. 23 ( 2013-11-28), p. 3843-3844
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 126, No. 23 ( 2015-12-03), p. 3423-3423
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3423-3423
    Abstract: Introduction: Ruxolitinib is a JAK inhibitor that was recently approved for treatment of primary and secondary MF and shows impressive symptom control by suppression of inflammation. The observed effects are irrespective of the JAK mutational status. Ruxolitinib is also a promising drug for treatment of acute and chronic GvHD (Spoerl et al., Blood 2014 and Zeiser et al., Leukemia, in press). We recently demonstrated that the immune-modulatory effects of ruxolitinib might at least in part be due to an inhibitory effect on dendritic cell (DC) biology (Heine et al., Blood 2014). Dendritic cells are important antigen-presenting cells, which mature and migrate from the periphery into draining lymph nodes upon antigen contact to prime T cells. This process follows chemokine gradients and requires cytoskeletal rearrangement to allow cell movement along the gradients. Members of the family of small GTPases are critically involved in cell chemotaxis, migration and formation of the immunological synapse allowing DC-T cell interaction. The aim of this study was to define in detail the impact of the JAK inhibitor ruxolitinib on DC migration. Methods: CD14+ cells isolated from human buffy coats were differentiated for seven days in the presence of GM-CSF and IL-4 to moDCs and finally matured with LPS. Murine bone marrow-derived DCs (bmDCs) were generated by flushing bone marrow from femura and tibiae of mice and subsequent plating of the cells in medium containing GM-CSF followed by final maturation by LPS. Migration of DCs was analyzed in Transwell assays or dynamically by time-lapse microscopy within three dimensional collagen gels towards CCL19 gradients. Adhesion of cells was tested on different substrates and phenotypic DC marker checked by flow cytometry. Signaling events were analyzed by Western Blot to evaluate changes in phosphorylation levels of relevant proteins of the RhoA/ROCK-pathway. Results: 2D-migration of ruxolitinib-exposed DC on fibronectin is dose-dependently reduced in vitro. By analyzing the migratory phenotype of human moDCs within 3D-collagen gels, ruxolitinib-exposed DCs are still able to sense chemokine gradients as they form lamellipodia at the leading edge of the cell, whereas the retraction of the uropod is clearly inhibited. As a consequence, cell velocity, accumulated and euclidean distance are all significantly reduced by ruxolitinib. These effects are already seen 30 minutes after ruxolitinib exposure. Notably (and in line with the morphological chemokine-sensing by lamellipodia formation), the surface expression of the CCL19-sensing chemokine receptor CCR7 is not altered by ruxolitinib. Moreover, we could not detect any changes of integrin expression or the adhesion of mature DC to fibronectin or collagen as a potential reason for lowered migration due to increased "stickiness" of the DCs. Additional in vivo studies could show that the JAK inhibitor potently reduces homing of bmDCs into draining lymph nodes in mice. Notably, the impaired DC migration is independent of JAK inhibition, as siRNA knockdown experiments revealed that DCs with JAK1, JAK2 or JAK1/2 knockdown migrate appropriately in vitro applying again the 3D-migration system. On a molecular level we could show a reduced phosphorylation of myosin-light chain phosphatase 1 (MYPT1), a direct target of the Rho-associated protein kinase (ROCK) in ruxolitinib-treated moDC upon CCL19 stimulation. Interestingly, the known inhibition of DC activation and maturation seen after treatment with ruxolitinib could not be observed if cells are incubated with the ROCK inhibitor Y-27632. Whereas pharmacological inhibition of ROCK mimicked the migration phenotype seen in moDC exposed to ruxolitinib. Conclusion: RhoA/ROCK pathway is critical for cell migration, as ROCK is a downstream effector of RhoA and leads to stabilization of the actin cytoskeleton via cofilin and acto-myosin II contraction by the myosin light chain. The observed reduction of ROCK activity may reveal an important novel mechanism of ruxolitinib-induced inhibition of DC migration. Our current efforts focus on the validation of ROCK as off-target JAK1/2-independent target kinase of ruxolitinib as potential mediator of the observed DC inhibitory effects, which may at least in part also explain the potential therapeutic impact of ruxolitinib for treatment of GvHD or autoimmunity. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 125, No. 22 ( 2015-05-28), p. 3374-3375
    In: Blood, American Society of Hematology, Vol. 125, No. 22 ( 2015-05-28), p. 3374-3375
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2008
    In:  Cancer Immunology, Immunotherapy Vol. 57, No. 10 ( 2008-10), p. 1483-1491
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 57, No. 10 ( 2008-10), p. 1483-1491
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2008
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Cancer Immunology, Immunotherapy Vol. 70, No. 12 ( 2021-12), p. 3693-3700
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 70, No. 12 ( 2021-12), p. 3693-3700
    Abstract: The PI3Kδ-inhibitor Idelalisib is approved for the treatment of Non-Hodgkin lymphoma. However, its use has been decreased within the last years due to deleterious infections such as cytomegalovirus and pneumocystis jirovecii. Here, we have investigated the effect of Idelalisib on human monocyte-derived dendritic cells (DCs) as important players in the induction of immune responses. We found that Idelalisib-treated DCs displayed impaired T cell stimulatory function. PI3Kδ inhibition during differentiation resulted in decreased Interleukin-12, Interleukin-13 and TNFα production by DCs after lipopolysaccharide stimulation. Moreover, DCs showed decreased expression of the activation marker CD83 after Idelalisib treatment. Further, in line with this was the failure of Idelalisib-treated DCs to properly induce allogeneic T cells in a dose-dependent manner. Finally, activation of the NFκB pathway was also ablated in Idelalisib-treated DCs. Our results implicate that severe infectious complications may not only result from direct PI3Kδ-inhibition in T cells, but also from impaired DC function in Idelalisib-treated patients. Here, we provide new insight into the pathogenesis of Idelalisib-associated infectious complications. Our study may further provide a rationale for the use of Idelalisib as a novel therapeutic option in inflammatory diseases.
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Cancer Research and Clinical Oncology, Springer Science and Business Media LLC, Vol. 149, No. 10 ( 2023-08), p. 7007-7015
    Abstract: Intensity-modulated helical tomotherapy (HT) is a promising technique in preparation for bone marrow transplantation. Nevertheless, radiation-sensitive organs can be substantially compromised due to suboptimal delivery techniques of total body irradiation (TBI). To reduce the potential burden of radiation toxicity to organs at risk (OAR), high-quality coverage and homogeneity are essential. We investigated dosimetric data from kidney, lung and thorax, liver, and spleen in relation to peripheral blood kinetics. To further advance intensity-modulated total body irradiation (TBI), the potential for dose reduction to lung and kidney was considered in the analysis. Patients and methods 46 patients undergoing TBI were included in this analysis, partially divided into dose groups (2, 4, 8, and 12 Gy). HT was performed using a rotating gantry to ensuring optimal reduction of radiation to the lungs and kidneys and to provide optimal coverage of other OAR. Common dosimetric parameters, such as D05, D95, and D50, were calculated and analysed. Leukocytes, neutrophils, platelets, creatinine, GFR, haemoglobin, overall survival, and graft-versus-host disease were related to the dosimetric evaluation using statistical tests. Results The mean D95 of the lung is 48.23%, less than half the prescribed and unreduced dose. The D95 of the chest is almost twice as high at 84.95%. Overall liver coverage values ranged from 96.79% for D95 to 107% for D05. The average dose sparing of all patients analysed resulted in an average D95 of 68.64% in the right kidney and 69.31% in the left kidney. Average D95 in the spleen was 94.28% and D05 was 107.05%. Homogeneity indexes ranged from 1.12 for liver to 2.28 for lung. The additional significance analyses conducted on these blood kinetics showed a significant difference between the 2 Gray group and the other three groups for leukocyte counts. Further statistical comparisons of the dose groups showed no significant differences. However, there were significant changes in the dose of OAR prescribed with dose sparing (e.g., lung vs. rib and kidney). Conclusion Using intensity-modulated helical tomotherapy to deliver TBI is a feasible method in preparation for haematopoietic stem cell transplantation. Significant dose sparing in radiosensitive organs such as the lungs and kidneys is achievable with good overall quality of coverage. Peripheral blood kinetics support the positive impact of HT and its advantages strongly encourage its implementation within clinical routine.
    Type of Medium: Online Resource
    ISSN: 0171-5216 , 1432-1335
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1459285-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 14 ( 2023-9-26)
    Abstract: Several anaplastic lymphoma kinase (ALK)-inhibitors (ALKi) have been approved for the treatment of ALK-translocated advanced or metastatic Non Small Cell Lung Cancer (NSCLC), amongst crizotinib and alectinib. This forces physicians to choose the most suitable compound for each individual patient on the basis of the tumor´s genetic profile, but also in regard to toxicities and potential co-treatments. Moreover, targeted therapies might be combined with or followed by immunotherapy, which underlines the importance to gain detailed knowledge about potential immunomodulatory effects of these inhibitors. We here aimed to 1.) determine whether ALKi display an immunosuppressive effect on human dendritic cells (DCs) as important mediators of antigen-specific immunity and to 2.) dissect whether this immunosuppression differs among ALKi. Methods We investigated the effect of alectinib and crizotinib on human monocyte-derived DCs (moDC) as most powerful antigen-presenting cells. We performed immunophenotyping by flow cytometry, migration, antigen uptake and cytokine assays. Results Crizotinib-treated DCs showed reduced activation markers, such as CD83, decreased chemokine-guided migration, lower antigen uptake and produced inferior levels of pro-inflammatory cytokines, especially Interleukin-12. In contrast, the immunosuppressive potential of alectinib was significantly less pronounced. This indicates that crizotinib might profoundly dampen anti-tumor immunity, while alectinib had no unfavourable immunosuppressive effects. Conclusions Our results implicate that current ALKi differ in their capacity to suppress the activation, migration and cytokine production of DCs as essential mediators of T cell immunity. We show that crizotinib, but not alectinib, had immunosuppressive effects on DCs phenotype and reduced DC function, thereby potentially impairing anti-tumor immunity.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...