GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 531-531
    Abstract: Chromosomal translocations found in acute myeloid leukemia (AML) can generate oncogenic fusions with aberrant epigenetic and transcriptional functions. However, direct therapeutic targeting of leukemia fusion proteins has not been accomplished so far. Although high remission rates can be induced in patients diagnosed with AML1-ETO/t(8;21)-positive AML only half of them achieve long-term disease-free survival (Papaemmanuiel et al., NEJM, 2016). In the other half of these patients, the disease maintaining leukemia stem cell (LSC) clone is not eliminated by chemotherapy. A functional characteristic of LSCs is unlimited self-renewal capacity and several signaling pathways have been identified that maintain stem cell self-renewal. Targeting the oncogene induced self-renewal capacity of LSCs has great potential to eliminate the malignant clone and prevent relapse. To identify oncogenic cellular functions with relevance for LSC self-renewal, we performed global proteome profiling in murine AML1-ETO9a (AE) compared to MLL-AF9 (MA9) driven LSCs. Gene set enrichment analyses revealed a significant enrichment of calcium-dependent cellular functions and Phospholipase C (PLC)-signaling in AE LSCs. These data could be confirmed in sorted CD34+ blasts from AE-positive AML when compared to non-AE-AML. All PLC family members are regulators of Ca2+ homeostasis. However, when analyzing published AML gene expression datasets we found exclusively PLCG1 to be highly expressed in t(8;21) AML. Conditional activation of AE in embryonic stem cells resulted in induction of PLCG1 expression and PLCG1 was identified as a direct target of the AE fusion by ChIP-sequencing in AE-positive Kasumi-1 cells.Here, PLCG1 depletion resulted in reduced Ca2+ release, impaired proliferation and reduced colony formation in vitro. In a xenograft model, inactivation of PLCG1 resulted not only in delayed disease development (median survival shNT vs. shPLCG1: 135 days vs. not reached, p=0.02) but also in reduction of disease penetrance by 87%. Consistent with these results, transcriptome analysis revealed strong induction of gene sets related to myeloid differentiation and down-regulation of gene sets linked to proliferation, stemness and c-Myc targets. To confirm the functional role of PLCG1-signaling in AE-driven LSCs, we generated a new conditional knockout mouse model for Plcg1 and induced leukemia using the oncogenes AE and KRAS-G12D (AE/K). Genetic inactivation of Plcg1in vivo after engraftment of leukemic cells resulted in significant reduction of LSC numbers (p=0.04) and a reduction of disease penetrance by 67% in primary recipients. Isolated LSCs revealed induction of differentiation, loss of cell cycle activity and failed to re-establish disease in secondary recipients (Plcg1+/+ vs. Plcg1-/-: median survival 12 days vs. not reached; p=0.0001). In contrast, genetic deletion of Plcg1 appeared to be dispensable for normal murine HSC function during primary and secondary transplantation. Primary human t(8;21) AML cells (derived from 4 different donors) showed impaired colony forming capacity following PLCG1 inactivation in vitro irrespective of co-occurring mutations while colony formation of human CD34+ BM cells was not affected to a major extent. As Ca2+ signaling appeared deregulated in t(8;21) AML, we aimed to investigate the effects of pharmacologic Ca2+ inhibition as a tractable target downstream of PLCG1. To assess specifically for LSC function, we treated primary recipient mice with established AE/K-driven leukemia with the clinically approved calcineurin inhibitor ciclosporin (CsA), a compound that blocks intracellular Ca2+ release. CsA-treated animals showed reduction in total leukemic burden (spleen weight diluent vs. CsA, p=0.01) and LSC numbers (p=0.02). This resulted in increased survival of secondary recipient hosts (diluent vs. CsA: median 15 vs. 29 days, p=0.0002). These effects could not be observed for other oncogenes (e.g. MA9), confirming its specificity for AE-induced disease. Consistently, CsA treated primary human t(8;21)-positive AML blasts failed to form colonies in methylcellulose. In summary, our findings identified PLCG1-dependent Ca2+ signaling as a critical pathway for t(8;21) LSC maintenance and self-renewal. Most importantly, as PLCG1 is dispensable for maintenance of normal HSPCs, PLCG1 could serve as a novel therapeutic target in t(8;21) AML. Disclosures Döhner: Daiichi: Honoraria; Jazz: Honoraria; Novartis: Honoraria; Celgene: Honoraria; Janssen: Honoraria; CTI Biopharma: Consultancy, Honoraria. Bullinger:Novartis: Honoraria; Menarini: Honoraria; Jazz Pharmaceuticals: Honoraria; Abbvie: Honoraria; Astellas: Honoraria; Amgen: Honoraria; Seattle Genetics: Honoraria; Sanofi: Honoraria; Janssen: Honoraria; Hexal: Honoraria; Gilead: Honoraria; Daiichi Sankyo: Honoraria; Celgene: Honoraria; Bristol-Myers Squibb: Honoraria; Bayer: Other: Financing of scientific research; Pfizer: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 7 ( 2022-07), p. 1843-1849
    Abstract: Mutations of the JAK2 gene are frequent aberrations in the aging hematopoietic system and in myeloid neoplasms. While JAK-inhibitors efficiently reduce hyperinflammation induced by the constitutively active mutated JAK2 kinase, the malignant clone and abundance of mutated cells remains rather unaffected. Here, we sought to assess for genetic vulnerabilities of JAK2-mutated clones. We identified lysine-specific demethylase KDM4C as a selective genetic dependency that persists upon JAK-inhibitor treatment. Genetic inactivation of KDM4C in human and murine JAK2-mutated cells resulted in loss of cell competition and reduced proliferation. These findings led to reduced disease penetrance and improved survival in xenograft models of human JAK2-mutated cells. KDM4C deleted cells showed alterations in target histone residue methylation and target gene expression, resulting in induction of cellular senescence. In summary, these data establish KDM4C as a specific dependency and therapeutic target in JAK2-mutated cells that is essential for oncogenic signaling and prevents induction of senescence.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1410-1410
    Abstract: Inhibitors of JAK2-kinase (Ruxolitinib, Momelotinib) are already approved or currently investigated in advanced clinical trials for treatment of myeloproliferative neoplasia (MPN). Besides their effect on mutated JAK2-kinase these compounds inhibit wildtype JAK and thereby impair JAK-STAT-signaling, which is an important pathway for proliferation and activation of other cell types such as human T-cells. Accumulating evidence suggests that they may also exert substantial immunosuppressive activity. Very recent reports highlighting hepatitis B reactivation complemented the series of severe infections in ruxolitinib-treated patients among which cryptococcus neoformans pneumonia, toxoplasmosis retinitis, disseminated tuberculosis, and progressive multifocal leukencephalopathy are the most alarming. We hypothesized that JAK-kinase inhibitors may act as immunosuppressant drugs by impairment of T-cell responses through inhibition of T-cell signaling (JAK-STAT pathway) and that specificity of JAK-kinase inhibition may be of major importance for the degree of T-cell inhibition. Therefore we investigated the effects of pharmacological JAK-kinase inhibition on healthy donor (HD-) and MPN patient T-cells. Selective inhibitors of JAK2-kinase (BSK805) and JAK3-kinase (BQM245) as well as clinically relevant inhibitors of JAK1/2-kinases (Ruxolitinib and Momelotinib) were used for pharmacologic inhibition. The SRC-kinase inhibitor Dasatinib served as a positive control for T-cell inhibition. Knockdown of specific JAK-kinases by RNAi was used to control for target specificity. In regard to T-cell receptor (TCR)-mediated signaling we investigated bona fide signaling molecules downstream of the TCR by Western Blotting. Besides SRC-kinases like LCK also ZAP70, PLCG1 and the MAPK/ERK pathway have been described to play a pivotal role in T-cell activation. In our data set, selectivity of JAK-kinase inhibition (JAK2, JAK3 or JAK1/2) influenced TCR-signaling in regard to overall tyrosine phosphorylation but also in regard to downstream effectors such as ERK. As activation and proliferation of primary T-cells is a critical step in immune responses against viral and tumor antigens we aimed to investigate the influence of JAK-kinase inhibition on activation and proliferation of human T-cells. T-cells from healthy donors were stimulated using either PHA 0.5% or CD3/CD28 beads to ensure a more T-cell receptor specific stimulation. CD69 expression was used as a marker for T-cell activation and CFSE staining was applied to assess for T-cell proliferation. Using CD3/CD28 stimulation, CD69 expression was almost abrogated following Dasatinib treatment and proliferation was significantly reduced. Applying relevant doses of specific JAK2 and JAK3 inhibitors to isolated T-cells did neither influence CD69 expression nor T-cell proliferation. These findings are confirmed by RNAi. In contrast, clinically relevant doses of JAK1/2 inhibitors Ruxolitinib and Momelotinib, respectively reduced CD69 expression and T-cell proliferation. Likewise, T-cells derived from MPN patients treated with Ruxolitinib revealed decreased CD69 expression and decreased proliferative capacity upon stimulation, compared to untreated patients or HD-controls. In order to investigate T-cell function, we assessed for allo-reactivity in a mixed lymphocyte culture. Human pan-T-cells were co-cultured with allogeneic antigen presenting cells. T-cell reactivity – as measured by 3H-thymidine incorporation – was significantly impaired by Ruxolitinib and Momelotinib. Specific inhibition of JAK2 or JAK3 kinase, however, did not affect T-cell reactivity. These effects could be confirmed using T-cells derived from Ruxolitinib-treated MPN patients. Investigation of leukemia- and virus-antigen-specific T-cell responses are currently under way to gain deeper insight regarding this clinically relevant scenario. Taken together, specificity of JAK-kinase inhibition influences the inhibitory potential on T-cell function. JAK1 kinase seems to play an important role in T-cell activation, as unspecific inhibitors of JAK1 & JAK2 Kinase inhibit T-cell function while selective inactivation of JAK2 kinase leaves T-cell function almost unaffected. Heterogeneity in T-cell function of Ruxolitinib-treated patients is an important finding that deserves detailed investigation. Disclosures Heidel: Novartis: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1045-1045
    Abstract: Abstract 1045 In patients with FLT3-ITD mutated AML, FLT3-inhibitors have been used successfully as a ‘bridging therapy’ before allogeneic transplantation. Inhibitors of other kinases (such as imatinib for BCR-ABL positive CML) have previously been used successfully after allogeneic transplantation – even before discontinuation of immunosuppressive medication. However, it is known that some BCR-ABL inhibitors such as dasatinib exert strong inhibitory effects on primary T-cells through inhibition of Src-kinases relevant for T-cell receptor signaling. Even imatinib and nilotinib - although not affecting Src kinase activity – showed decreased T-cell activation and reactivity to some extent. Thus, the influence of FLT3-kinase inhibitors on T-cell function may be critical in the context of allogeneic bone marrow transplantation for FLT3-ITD-positive AML. Besides inhibition of FLT3-kinase, midostaurin (PKC412) exerts activity against PDGFR, VEGFR or c-KIT. In contrast, second generation inhibitors such as quizartinib (AC220) act in a far more FLT3-specific manner. Therefore, we aimed to investigate the effects of both clinically relevant FLT3-inhibitors on T-cell receptor signaling in comparison to the well characterized and potent BCR-ABL inhibitor dasatinib. Investigating primary T-cells derived from healthy donors, we applied a dose range of 10–50 nM dasatinib, 5–50nM midostaurin and 10–50 nM quizartinib. These dose ranges have been previously described to be achievable as trough levels during inhibitor therapy in early clinical trials. Upon incubation with dasatinib (10nM and 50nM), we found overall reduction in global tyrosine phosphorylation as detected by Western-blotting using the 4G10 antibody. In contrast, treatment with midostaurin left the activation of T-cell receptor signaling pathways unaffected. Comparable to DMSO control, overall phosphorylation was induced almost immediately after stimulation. Western-blotting of LCK and Plcg1 showed similar time dependent activation compared to total phosphorylation. Likewise, quizartinib did not reduce overall tyrosine phosphorylation level and left activation of downstream kinases (ZAP70, MAPK, LCK, Plcg1) largely unaffected. As activation of primary T-cells is a critical step in immune responses against viral and tumor antigens we aimed to investigate the influence of FLT3-kinase inhibitors quizartinib and midostaurin on activation of CD8+ T-cells. T-cells from healthy donors were stimulated using either PHA 0.5% or CD3/CD28 beads to ensure a more T-cell receptor specific stimulation. Using CD3/CD28 stimulation, CD69 expression was almost abrogated following dasatinib treatment. Applying clinically relevant doses of midostaurin or quizartinib to isolated T-cells did not influence CD69 expression. Expression levels upon PHA or CD3/CD28 stimulation were comparable to DMSO-control - even in the presence of 50nM midostaurin or quizartinib. Proliferation of T-cells upon CD3/CD28 stimulation was impaired by dasatinib treatment, while midostaurin and quizartinib left T-cell proliferation largely unaffected – as determined by CSFE staining. In order to investigate the T cell allo-reactivity, mixed lymphocyte culture was performed, where human pan-T-cells are co-cultured with allogeneic antigen presenting cells. T-cell proliferation – as measured by 3H-thymidine incorporation – was significantly impaired by dasatanib but neither midostaurin nor quizartinib treatment. Investigation of leukemia- and virus-antigen-specific T-cell responses are currently under way to gain deeper insight regarding this clinically relevant scenario. Overall, we found FLT3-kinase inhibitors midostaurin and quizartinib to leave T-cell activation, proliferation and function unaffected in-vitro. This information may be useful for the design of up-coming clinical trials testing the safety and efficacy of FLT3-kinase inhibitors in combination with allogeneic stem-cell transplantation. Disclosures: Lipka: Novartis Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Heidel:Novartis Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature, Springer Science and Business Media LLC, Vol. 588, No. 7836 ( 2020-12-03), p. 157-163
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 7 ( 2020-07), p. 1972-1972
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 2 ( 2022-02), p. 426-437
    Abstract: Persistence of malignant clones is a major determinant of adverse outcome in patients with hematologic malignancies. Despite the fact that the majority of patients with acute myeloid leukemia (AML) achieve complete remission after chemotherapy, a large proportion of them relapse as a result of residual malignant cells. These persistent clones have a competitive advantage and can re-establish disease. Therefore, targeting strategies that specifically diminish cell competition of malignant cells while leaving normal cells unaffected are clearly warranted. Recently, our group identified YBX1 as a mediator of disease persistence in JAK2 -mutated myeloproliferative neoplasms. The role of YBX1 in AML, however, remained so far elusive. Here, inactivation of YBX1 confirms its role as an essential driver of leukemia development and maintenance. We identify its ability to amplify the translation of oncogenic transcripts, including MYC, by recruitment to polysomal chains. Genetic inactivation of YBX1 disrupts this regulatory circuit and displaces oncogenic drivers from polysomes, with subsequent depletion of protein levels. As a consequence, leukemia cells show reduced proliferation and are out-competed in vitro and in vivo, while normal cells remain largely unaffected. Collectively, these data establish YBX1 as a specific dependency and therapeutic target in AML that is essential for oncogenic protein expression.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Neuroinflammation, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2018-12)
    Type of Medium: Online Resource
    ISSN: 1742-2094
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2156455-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 529-529
    Abstract: Several cellular pathways control the fine balance between self-renewal and differentiation to maintain leukemia-initiating cell (LIC) function. To identify cellular dependencies with relevance for oncogenic fusion proteins, we performed global proteome profiling. Acute myeloid leukemia (AML) was induced by retroviral expression of either MLL-AF9 (MA9) or AML1-ETO9a (AE) in murine hematopoietic stem and progenitor cells (HSPCs) (Lineage-Sca1+Kit+, LSK) which were subsequently transplanted into irradiated syngeneic recipients. After onset of leukemia, LIC-enriched (GFP+ Kithigh) cells isolated from 4 different primary recipients (per oncogene) were analyzed by in-depth quantitative proteomic analysis using high-resolution mass spectrometry (MS). More than 3,000 proteins were quantified with 868 proteins being differentially expressed between MA9 and AE LIC-enriched populations. In MLL-rearranged (MLLr) cells, gene set enrichment analysis (GSEA) revealed significant enrichment of cellular functions related to protein degradation and proteasome function. As this enrichment is present in MLLr-leukemia but not AE-driven LICs, may indicate an oncogene specific vulnerability. Expression of proteasome subunits is highly heterogeneous between different cell types and therefore may also be influenced by the underlying differentiation stage or oncogenic fusion. In published AML gene-expression datasets, immunoproteasome (IP) subunits PSMB8/LMP7 (p=0.0003***), PSMB9/LMP2 (p=0.0007***) and PSMB10/MECL1 (p & lt;0.0001****) showed significantly higher expression in MLLr compared to non-MLLr-AML. IP is a proteasomal variant constitutively expressed in cells of hematopoietic origin, induced under stimulation with pro-inflammatory cytokines and relevant for mediating stress-responses during inflammation and infection. To assess for functional dependency of MLLr cells on IP subunits we performed an in vitro CRISPR/Cas9 dropout screen in MLLr MOLM-13 cells. Genetic inactivation of PSMB8/LMP7 resulted in outcompetition with 3/5 sgRNAs, while there was less dependency detectable for the other subunits. Specificity of this finding was confirmed in 5 different cell lines (4 MLLr; 1 non-MLLr) by RNAi using 2 shRNAs against PSMB8/LMP7 versus non-targeting control. To confirm these findings in primary cells, we used a previously published conventional LMP7 knockout mouse model (Fehling et al., Science, 1994). LSK cells sorted from the bone marrow (BM) of LMP7 knockout and wildtype mice were retrovirally transformed with either MA9, MLL-ENL (ME) or NUP98-HOXA9 (as non-MLLr control) to assess for disease development by serial plating in methylcellulose. Only in MA9 or ME transformed cells LMP7-deficiency limited re-plating capacity to 2-4 rounds. When we injected 2,5x 104 MA9-infected LSK cells into sublethally irradiated recipient mice, recipients of MA9-LMP7-/- cells (n=12) and MA9-LMP7+/+ (n=12) showed development of AML. However, recipients of MA9-LMP7-/- cells had a significant delay in AML development (median survival 63.0 days for LMP7+/+ versus 92.5 days for LMP7 -/- animals, p=0.0387*). Besides the significant delay in AML development, disease penetrance was reduced by 50%, indicating that deficiency for LMP7 impairs development of MA9 driven AML. In contrast, immunophenotypic abundance of HSPCs in LMP7-/- versus LMP7+/+ animals revealed comparable numbers in all relevant subpopulations. Competitive transplantation of LMP7-/- BM into recipient hosts showed no competitive disadvantage or lack of self-renewal capacity compared to LMP7+/+ controls. Pharmacologic inhibition of IP function using the specific LMP7-inhibitor PR-957 (ONX-0914) resulted in significant delay of disease development in secondary recipient hosts. To assess its effect on LIC frequency we performed limiting dilution assays of MA9 leukemic cells in sublethally irradiated recipient mice. PR-957 treatment reduced LIC frequency compared to DMSO control (1/57410 vs. 1/4450). Pharmacologic inhibition of PSMB8/LMP7 in human MLLr leukemia cell lines induced cellular differentiation. Likewise, cell cycle and metabolism appeared affected, functions which could be confirmed by global transcriptome analysis. Taken together, our studies uncover a selective dependency of MLLr-leukemia on IP function and identify PSMB8/LMP7 as a tractable target. Disclosures Heidel: Celgene: Consultancy; Novartis: Consultancy, Research Funding; CTI: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 491-492
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...