GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 1509-1509
    Abstract: For many pediatric cancer patients, commonly used gene-panel sequencing tests yield few actionable results, partly due to the complex genomic alterations present. We hypothesized that an unbiased approach, combining whole-genome (WGS) and RNA sequencing (RNAseq), could overcome this and lead to a more comprehensive understanding of these diseases. While prior studies have evaluated WGS and RNAseq in pediatric cancers, few focused primarily on metastatic or relapsed disease. We also placed special focus on longitudinal profiling of patients, including with additional deep sequencing, to capture tumor evolution at the primary and metastatic sites, and to quantify the utility of resampling. We assembled a cohort of 191 high-risk pediatric oncology patients, including solid tumors, CNS tumors, and leukemias/lymphomas. We have representation of patients with relapsed/refractory disease (68), metastatic disease at diagnosis (10), rare diagnoses (19), prior cancer history, and estimated overall survival & lt;50%. We characterized 280 samples with WGS (tumor ~60X; germline ~30X) and/or RNAseq (tumor, polyA selected, ≥20 million reads), including multiple samples taken from 85 patients at different time points (diagnosis, resection, relapse, etc.). Variants (SNVs), structural rearrangements (SVs), mutational signatures, and copy-number alterations (CNAs) were identified using WGS. RNAseq was used to profile gene expression outliers, gene fusions, and expression of variants identified by WGS. The integrated results were used to prioritize potentially actionable variants for each patient. For 20 patients (44 samples), we performed targeted deep sequencing of the DNA (~500X) to profile tumor evolution that cannot be captured by WGS. Multiple sampling from the same patient identified drastic spatial and temporal differences in the genomes and transcriptomes of these tumors. Using the Jaccard index as a measure of concordance between samples shows dynamic changes between samples collected at different time points across multiple modalities (range 0-1, 1 is identical); SNVs ranged from 0.01-0.79, SVs 0.01-0.73, major CNAs 0.07-0.99, minor CNAs 0.38-0.99, up expression outliers 0.12-0.56, down expression outliers 0.04-0.54, and fusions 0-1. Potentially biologically significant differences in therapy-induced mutations by platinum agents were also observed, highlighting the impact of therapy on tumor evolution. Clonal architectures were extracted from deep resequencing and show extensive spatial, temporal, and metastatic heterogeneity in these rare and highly aggressive malignancies that is not captured by WGS alone. Identifying clinically relevant evolution remains a challenge in most patients, but our results suggest that resampling of pediatric tumors at relapse or metastasis will be important for the effectiveness of targeted therapies in the future. Citation Format: Henry J. Martell, Avanthi T. Shah, Alex G. Lee, Bogdan Tanasa, Stanley G. Leung, Aviv Spillinger, Heng-Yi Liu, Inge Behroozfard, Phuong Dinh, María V. Pons Ventura, Florette K. Hazard, Arun Rangaswami, Sheri L. Spunt, Norman J. Lacayo, Tabitha Cooney, Jennifer G. Michlitsch, Anurag K. Agrawal, Marcus R. Breese, Alejandro Sweet-Cordero. Longitudinal profiling of high-risk pediatric malignancies using a multiomics approach [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1509.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 54-54
    Abstract: The use of sequencing-based assays for clinical management of pediatric cancer patients has become increasingly common. However, for many pediatric patients, gene panel based sequencing tests yield few actionable results. Given the complex genomic alterations present in many pediatric cancers, especially high-risk solid tumors, we hypothesized that an unbiased approach might reveal more actionable findings and lead to a more comprehensive understanding of these diseases. To accomplish this, we integrated whole-genome sequencing (WGS) with RNAseq in the analysis of a pediatric oncology cohort, with a focus on longitudinal cases to capture potential tumor evolution in metastatic or treated cases. Our cohort consists of 269 high-risk pediatric oncology patients, including patients with relapsed/refractory disease, metastatic disease at diagnosis, prior cancer history, a rare diagnosis, or an estimated overall survival & lt;50%. Solid tumors, CNS tumors, and leukemia/lymphomas are all represented. In total, 391 samples were characterized using WGS (tumor ~60X; germline ~30X) and/or RNAseq (tumor, polyA selected, ≥20 million reads). For 85 of these patients, multiple samples were collected at different time points (diagnosis, resection, relapse, etc.) to identify changes in the cancer over time. If panel testing was performed as part of their clinical care, a comparison to the integrated WGS/RNA analysis was made. WGS was used to identify variants (SNVs), structural rearrangements (SVs), mutational signatures, and copy-number alterations (CNAs). RNAseq was used to identify gene expression outliers, gene fusions, and confirm the expression of variants identified using WGS. The combination of WGS and RNAseq was then used to identify and prioritize potentially actionable variants for each patient. Our results show that the integration of WGS and RNAseq can provide more and higher-quality actionable information than either modality alone, whilst also capturing the majority of actionable variants detected by panel sequencing. RNAseq identified not only druggable fusions and expression outliers, but also many rare and novel fusions. WGS provided fusion validation but highlighted the limitations of WGS alone in identifying fusions resulting from complex SVs. Conversely, WGS was adept at capturing genome-wide patterns of CNAs and loss of heterozygosity that are missed by gene-centric panels. Further RNAseq integration enabled prioritization of expressed SNVs as well as CNAs and SVs that significantly alter gene expression. We also used WGS to extract mutational signatures and tracked their evolution across longitudinal samples. We found potentially biologically significant differences in therapy-induced mutations caused by platinum and alkylating agents. Our unbiased approach has enabled further discovery that advances our understanding of these rare and highly aggressive malignancies. Citation Format: Henry J. Martell, Avanthi Tayi Shah, Alex G. Lee, Bogdan Tanasa, Stanley G. Leung, Aviv Spillinger, Heng-Yi Liu, Inge Behroozfard, Phuong Dinh, Maria V. Pons Ventura, Florette K. Hazard, Arun Rangaswami, Sheri L. Spunt, Norman J. Lacayo, Tabitha Cooney, Jennifer G. Michlitsch, Anurag K. Agrawal, Marcus R. Breese, E. Alejandro Sweet-Cordero. Integrative analysis of whole-genome and RNA sequencing in high-risk pediatric malignancies [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 54.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pediatric Blood & Cancer, Wiley, Vol. 59, No. 4 ( 2012-10), p. 611-616
    Abstract: Ewing sarcoma (ES) is a malignant tumor of bone and soft tissue of children and young adults. Patients with ES are treated with intensive chemotherapy regimens. We describe predictors of acute chemotherapy‐associated toxicity in this population. Procedure In this retrospective cohort study, records of ES patients treated at two academic medical centers between 1980 and 2010 were reviewed. Grade 3 and 4 non‐hematologic chemotherapy‐associated toxicities during frontline therapy were recorded for each patient, along with potential clinical and demographic predictors of toxicity. Bivariate analyses were performed using the Fisher exact test. Multivariate analysis was performed using logistic regression. Results The cohort included 142 patients with ES and toxicity data. In bivariate analyses, age 〈 12 years at diagnosis, Latino ethnicity, low family income, and treatment on a clinical trial were associated with higher incidence of toxicity ( P   〈  0.01). Tumor size, site, stage, mode of local control, body mass index, overall chemotherapy exposure and dose‐intensity were not associated with toxicity. In multivariate analysis, low income (odds ratio (OR) 4.97, 95% confidence interval (CI) 1.9–13.1), clinical trial enrollment (OR 3.67, 95% CI 1.2–10.9), pelvic tumor site (OR 3.88, 95% CI 1.17–12.88), and age 〈 12 years (OR 2.8, 95% CI 1.0–7.5) were independent predictors of toxicity. Conclusion ES patients who are younger, of Latino ethnicity, have pelvic tumors or low income have higher rates of toxicity that may require increased supportive care. Treatment on a clinical trial was also associated with higher rates of toxicity, though this finding may reflect better reporting in these patients. Pediatr Blood Cancer 2012;59:611–616. © 2011 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1545-5009 , 1545-5017
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 2130978-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2013
    In:  Medical Care Vol. 51, No. 12 ( 2013-12), p. 1055-1062
    In: Medical Care, Ovid Technologies (Wolters Kluwer Health), Vol. 51, No. 12 ( 2013-12), p. 1055-1062
    Type of Medium: Online Resource
    ISSN: 0025-7079
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2013
    detail.hit.zdb_id: 2045939-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: British Journal of Cancer, Springer Science and Business Media LLC, Vol. 127, No. 9 ( 2022-11-01), p. 1577-1583
    Abstract: Germ cell tumours (GCTs) are a heterogeneous group of rare neoplasms that present in different anatomical sites and across a wide spectrum of patient ages from birth through to adulthood. Once these strata are applied, cohort numbers become modest, hindering inferences regarding management and therapeutic advances. Moreover, patients with GCTs are treated by different medical professionals including paediatric oncologists, neuro-oncologists, medical oncologists, neurosurgeons, gynaecological oncologists, surgeons, and urologists. Silos of care have thus formed, further hampering knowledge dissemination between specialists. Dedicated biobank specimen collection is therefore critical to foster continuous growth in our understanding of similarities and differences by age, gender, and site, particularly for rare cancers such as GCTs. Here, the Malignant Germ Cell International Consortium provides a framework to create a sustainable, global research infrastructure that facilitates acquisition of tissue and liquid biopsies together with matched clinical data sets that reflect the diversity of GCTs. Such an effort would create an invaluable repository of clinical and biological data which can underpin international collaborations that span professional boundaries, translate into clinical practice, and ultimately impact patient outcomes.
    Type of Medium: Online Resource
    ISSN: 0007-0920 , 1532-1827
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2002452-6
    detail.hit.zdb_id: 80075-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. B20-B20
    Abstract: Targeted gene panel sequencing has become increasingly common in the management of pediatric cancer patients. For some patients, these cancer gene panel tests have identified clinically actionable findings, but for many pediatric patients, no actionable alterations are identified. This is in part due to the low mutational burden of pediatric malignancies; thus, an unbiased approach may shed light on potentially actionable findings. To accomplish this, we examined the feasibility and utility of whole-genome sequencing (WGS) and RNA sequencing (RNAseq) in the management of high-risk pediatric oncology patients. We describe our experience with a cohort of over 100 high-risk pediatric oncology patients, with a combination of solid tumors, brain tumors, and hematologic malignancies. The majority of patients were deemed high-risk due to relapsed/refractory disease. A second group of patients was defined as high-risk at time of initial diagnosis due to the presence of metastatic disease, an estimated overall survival of less than 50%, a rare tumor, an undifferentiated tumor, or prior history of another malignancy. When possible, multiple samples from an individual patient were collected (i.e., specimens at biopsy, resection, relapse, and/or from metastatic sites) to allow for evaluation of inter- and intratumoral heterogeneity. Close to 200 tumor samples were available for analysis using WGS and/or RNAseq analysis. Somatic DNA samples were sequenced to an average depth of 60X and germline samples to 30X. WGS samples were analyzed for SNVs, structural rearrangements (SVs), copy-number alterations (CNAs), and mutational signatures. RNAseq was performed to a depth of at least 20 million paired-end reads for each sample. These samples were analyzed to identify known and novel gene-fusions, measure allele specific expression of SNVs, and perform gene-expression outlier analysis. Expression of variants (SNV/SV) identified using WGS were confirmed using RNAseq. For gene expression outliers detected using RNAseq, the WGS data were used to predict possible mechanisms for the aberrant expression (such as CNA, gene fusions, or promoter hijacking). This analysis suggests that WGS and RNAseq analysis is feasible in a clinical setting and can reliably identify variants reported on gene panel tests. Furthermore, the use of WGS/RNAseq results in additional clinically informative findings while also enabling novel research to further advance our understanding of these rare and highly aggressive pediatric malignancies. Citation Format: Avanthi T. Shah, Marcus R. Breese, Alex G. Lee, Henry J. Martell, Bogdan Tanasa, Stanley G. Leung, Aviv Spillingeer, Heng-Yi Liu, Inge Behroozfard, Phuong Dinh, Florette K. Hazard, Soo-Jin Cho, Arun Rangaswami, Norman J. Lacayo, Sheri L. Spunt, Tabitha Cooney, Jennifer G. Michlitsch, Anurag K. Agarwaal, Alejandro Sweet-Cordero. Integrative analysis of whole-genome and RNA sequencing in high-risk pediatric malignancies [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr B20.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 17 ( 2018-09-01), p. 4110-4118
    Abstract: Purpose: Tumor-associated macrophages (TAMs) in malignant tumors have been linked to tumor aggressiveness and represent a new target for cancer immunotherapy. As new TAM-targeted immunotherapies are entering clinical trials, it is important to detect and quantify TAM with noninvasive imaging techniques. The purpose of this study was to determine if ferumoxytol-enhanced MRI can detect TAM in lymphomas and bone sarcomas of pediatric patients and young adults. Experimental Design: In a first-in-patient, Institutional Review Board–approved prospective clinical trial, 25 pediatric and young adult patients with lymphoma or bone sarcoma underwent ferumoxytol-enhanced MRI. To confirm ferumoxytol enhancement, five pilot patients (two lymphoma and three bone sarcoma) underwent pre- and postcontrast MRI. Subsequently, 20 patients (10 lymphoma and 10 bone sarcoma) underwent ferumoxytol-enhanced MRI 24 to 48 hours after i.v. injection, followed by tumor biopsy/resection and macrophage staining. To determine if ferumoxytol-MRI can differentiate tumors with different TAM content, we compared T2* relaxation times of lymphomas and bone sarcomas. Tumor T2* values of 20 patients were correlated with CD68+ and CD163+ TAM quantities on histopathology. Results: Significant ferumoxytol tumor enhancement was noted on postcontrast scans compared with precontrast scans (P = 0.036). Bone sarcomas and lymphomas demonstrated significantly different MRI enhancement and TAM density (P & lt; 0.05). Within each tumor group, T2* signal enhancement on MR images correlated significantly with the density of CD68+ and CD163+ TAM (P & lt; 0.05). Conclusions: Ferumoxytol-enhanced MRI is immediately clinically applicable and could be used to stratify patients with TAM-rich tumors to immune-targeted therapies and to monitor tumor response to these therapies. Clin Cancer Res; 24(17); 4110–8. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3665-3665
    Abstract: Clinical use of gene-panel based sequencing has become increasingly common in the management of pediatric cancer patients. For many patients, gene-panel tests have identified clinically actionable findings. However, highly targeted approaches will miss unanticipated (but potentially clinically meaningful) or novel alterations. In diseases with unknown or complex etiologies, including many pediatric high-risk and solid tumors, an unbiased approach may yield more actionable findings. To accomplish this, we examined the feasibility and utility of whole genome sequencing (WGS) and RNA sequencing (RNAseq) in the management of high-risk pediatric oncology patients. Here we describe our experience with an expanded cohort of over 100 high-risk pediatric oncology patients, with a combination of solid tumors, brain tumors, and leukemia/lymphomas represented. The majority of patients were deemed high-risk due to relapsed/refractory disease. An additional group of patients were defined as high-risk at time of initial diagnosis due to metastatic disease, a rare tumor, prior history of another cancer type, an undifferentiated tumor, or less than 50% estimated overall survival. WGS (tumor/germline) and RNAseq were used to characterize available samples and compared to results from panel testing for each patient (performed as part of their clinical evaluation). When possible, multiple samples from an individual patient were collected (i.e. specimens obtained at biopsy, resection, relapse, and/or from metastatic sites). Somatic DNA samples were sequenced to an average depth of at least 60X and germline samples to at least 30X. RNAseq was performed to a depth of at least 20 million paired-end reads for each sample. WGS samples were analyzed for single nucleotide variants (SNVs), structural rearrangements (SV), and copy-number alterations (CNA). RNAseq samples were analyzed to identify known and novel gene-fusions, to measure allele specific expression of SNVs, and to perform gene-expression outlier analysis. Expression of variants (SNV/SV) identified using WGS were confirmed using RNAseq. For gene expression outliers detected using RNAseq, the WGS data was used to predict possible mechanisms for the aberrant expression (such as CNA, gene fusions, or promoter hijacking). This analysis suggests that WGS and RNAseq analysis is feasible in a clinical setting and can reliably identify variants reported on gene panel tests. However, the use of WGS/RNAseq resulted in additional clinically informative findings while also enabling novel research to further advance our understanding of these rare and highly aggressive pediatric malignancies. Citation Format: Marcus R. Breese, Avanthi T. Shah, Alex G. Lee, Bogdan Tanasa, Stanley G. Leung, Aviv Spillinger, Heng-Yi Liu, Inge Behroozfard, Phuong Dinh, Florette K. Hazard, Arun Rangaswami, Sheri L. Spunt, Norman J. Lacayo, Tabitha Cooney, Jennifer G. Michlitsch, Anurag K. Agrawal, E. Alejandro Sweet-Cordero. Integrative analysis of whole-genome and RNA sequencing in high-risk pediatric malignancies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3665.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2016
    In:  American Journal of Surgical Pathology Vol. 40, No. 7 ( 2016-07), p. 998-1003
    In: American Journal of Surgical Pathology, Ovid Technologies (Wolters Kluwer Health), Vol. 40, No. 7 ( 2016-07), p. 998-1003
    Abstract: Hepatoblastoma is the most common malignant liver tumor in childhood. It has been associated with a variety of constitutional syndromes and gene mutations. However, there are very few reports of associations with pediatric hepatocellular adenomas (HCAs) and no reported associations with pigmented HCAs (P-HCAs). We present a unique case of hepatoblastoma arising in a background of 2 β-catenin-activated HCAs, one of which is pigmented, in a 4-year-old child. The gross, histologic, and immunohistochemical features are described for each tumor. In addition, the literature is reviewed with specific emphasis on the clinical and pathologic features of B-HCAs. Although the potential of β-catenin-activated HCAs to progress to hepatocellular carcinoma has been well documented, there are very few reports of their potential to progress to hepatoblastoma. We not only present such a case, but, to our knowledge, we also present the first case of a P-HCA in a child.
    Type of Medium: Online Resource
    ISSN: 0147-5185
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 2029143-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Imaging and Biology, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2019-2), p. 95-104
    Type of Medium: Online Resource
    ISSN: 1536-1632 , 1860-2002
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2079211-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...