GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2001
    In:  Proceedings of the National Academy of Sciences Vol. 98, No. 5 ( 2001-02-27), p. 2555-2560
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 5 ( 2001-02-27), p. 2555-2560
    Abstract: Gene expression profiling provides powerful analyses of transcriptional responses to cellular perturbation. In contrast to DNA array-based methods, reporter gene technology has been underused for this application. Here we describe a genomewide, genome-registered collection of Escherichia coli bioluminescent reporter gene fusions. DNA sequences from plasmid-borne, random fusions of E. coli chromosomal DNA to a Photorhabdus luminescens luxCDABE reporter allowed precise mapping of each fusion. The utility of this collection covering about 30% of the transcriptional units was tested by analyzing individual fusions representative of heat shock, SOS, OxyR, SoxRS, and cya/crp stress-responsive regulons. Each fusion strain responded as anticipated to environmental conditions known to activate the corresponding regulatory circuit. Thus, the collection mirrors E. coli 's transcriptional wiring diagram. This genomewide collection of gene fusions provides an independent test of results from other gene expression analyses. Accordingly, a DNA microarray-based analysis of mitomycin C-treated E. coli indicated elevated expression of expected and unanticipated genes. Selected luxCDABE fusions corresponding to these up-regulated genes were used to confirm or contradict the DNA microarray results. The power of partnering gene fusion and DNA microarray technology to discover promoters and define operons was demonstrated when data from both suggested that a cluster of 20 genes encoding production of type I extracellular polysaccharide in E. coli form a single operon.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 1990
    In:  Weed Science Vol. 38, No. 3 ( 1990-05), p. 256-261
    In: Weed Science, Cambridge University Press (CUP), Vol. 38, No. 3 ( 1990-05), p. 256-261
    Abstract: The overall degradation of chlorimuron was very similar at −0.1 and −1.5 MPa and slightly less in air-dry soil. Degradation rates increased with increasing temperature. The primary 14 C-labeled compounds observed in moist-soil extracts were desmethyl chlorimuron and saccharin, while the primary 14 C-labeled compound observed in air-dry soil extracts was saccharin. Saccharin is formed quantitatively from ethyl 2-(aminosulfonyl)benzoate (phenylsulfonamide) during extraction and therefore represents phenylsulfonamide formed in the soil as a result of chemical hydrolysis of the sulfonylurea bridge. These degradation products suggest that chemical hydrolysis of the sulfonylurea bridge is the primary mode of degradation in air-dry soil, while microbial degradation and chemical hydrolysis both occur in moist soil. These laboratory results demonstrate that chlorimuron will degrade in air-dry soil at a temperature-dependent rate by chemical hydrolysis.
    Type of Medium: Online Resource
    ISSN: 0043-1745 , 1550-2759
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 1990
    detail.hit.zdb_id: 2123881-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Cell Science, The Company of Biologists, Vol. 115, No. 24 ( 2002-12-15), p. 4891-4900
    Abstract: The phytohormone abscisic acid (ABA) plays important regulatory roles in many plant developmental processes including seed dormancy, germination,growth, and stomatal movements. These physiological responses to ABA are in large part brought about by changes in gene expression. To study genome-wide ABA-responsive gene expression we applied massively parallel signature sequencing (MPSS) to samples from Arabidopsis thaliana wildtype (WT)and abi1-1 mutant seedlings. We identified 1354 genes that are either up- or downregulated following ABA treatment of WT seedlings. Among these ABA-responsive genes, many encode signal transduction components. In addition,we identified novel ABA-responsive gene families including those encoding ribosomal proteins and proteins involved in regulated proteolysis. In the ABA-insensitive mutant abi1-1, ABA regulation of about 84.5% and 6.9%of the identified genes was impaired or strongly diminished, respectively;however, 8.6% of the genes remained appropriately regulated. Compared to other methods of gene expression analysis, the high sensitivity and specificity of MPSS allowed us to identify a large number of ABA-responsive genes in WT Arabidopsis thaliana. The database given in our supplementary materialprovides researchers with the opportunity to rapidly assess whether genes of interest may be regulated by ABA. Regulation of the majority of the genes by ABA was impaired in the ABA-insensitive mutant abi1-1. However, a subset of genes continued to be appropriately regulated by ABA, which suggests the presence of at least two ABA signaling pathways, only one of which is blocked in abi1-1.
    Type of Medium: Online Resource
    ISSN: 1477-9137 , 0021-9533
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2002
    detail.hit.zdb_id: 219171-4
    detail.hit.zdb_id: 1483099-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: FEBS Letters, Wiley, Vol. 554, No. 3 ( 2003-11-20), p. 373-380
    Abstract: Cytokinins have been implicated in developmental and growth processes in plants including cell division, chloroplast biogenesis, shoot meristem initiation and senescence. The regulation of these processes requires changes in cytokinin‐responsive gene expression. Here, we induced the expression of a bacterial isopentenyl transferase gene, IPT , in transgenic Arabidopsis thaliana seedlings to study the regulation of genome‐wide gene expression in response to endogenous cytokinin. Using MPSS (massively parallel signature sequencing) we identified 823 and 917 genes that were up‐ and downregulated, respectively, following 24 h of IPT induction. When comparing the response to cytokinin after 6 and 24 h, we identified different clusters of genes showing a similar course of regulation. Our study provides researchers with the opportunity to rapidly assess whether genes of interest are regulated by cytokinins.
    Type of Medium: Online Resource
    ISSN: 0014-5793 , 1873-3468
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2003
    detail.hit.zdb_id: 1460391-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...