GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science Education, Wiley, Vol. 107, No. 4 ( 2023-07), p. 999-1032
    Abstract: Research in science education with multilingual learners (MLs) has expanded rapidly. This rapid expansion can be situated within a larger dialogue about what it means to provide minoritized students with an equitable education. Whereas some conceptions of equity focus on ensuring all students have access to the knowledge, practices, and language normatively valued in K‐12 schools ( equity as access ), increasingly prominent conceptions focus on transforming those knowledge, practices, and language in ways that center minoritized students and their communities ( equity as transformation ). In this article, we argue that conceptions of equity provide a useful lens for understanding emerging research in science education with MLs and for charting a research agenda. We begin by tracing how conceptions of equity have evolved in parallel across STEM and multilingual education. Then, we provide an overview of recent developments from demographic, theoretical, and policy perspectives. In the context of these developments, we provide a conceptual synthesis of emerging research by our team of early‐career scholars in three areas: (a) learning, (b) assessment, and (c) teacher education. Within each area, we unpack the research efforts in terms of how they attend to equity as access while pushing toward equity as transformation. Finally, we propose a research agenda for science education with MLs that builds on and extends these efforts. We close by offering recommendations for making this research agenda coherent and impactful: (a) being explicit about our conceptions of equity, (b) paying attention to the interplay of structure and agency, and (c) promoting interdisciplinary collaboration.
    Type of Medium: Online Resource
    ISSN: 0036-8326 , 1098-237X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 415956-1
    detail.hit.zdb_id: 2018095-0
    SSG: 5,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Developmental Biology, Elsevier BV, Vol. 376, No. 1 ( 2013-04), p. 1-12
    Type of Medium: Online Resource
    ISSN: 0012-1606
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 1463203-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Gels, MDPI AG, Vol. 9, No. 5 ( 2023-04-30), p. 369-
    Abstract: Textile materials with fluorescent, repellent, or antimicrobial properties are increasingly used in common applications. Obtaining multi-functional coatings is of wide interest, especially for applications related to signaling or to the medical field. In order to increase the performance (color properties, fluorescence lifetime, self-cleaning or antimicrobial properties) of textile materials with special uses, a series of research was carried out regarding the modification of surfaces with nanosols. In this study, coatings with multiple properties were obtained by depositing nanosols on cotton fabrics generated through sol–gel reactions. These multifunctional coatings are hybrid materials in which the host matrix is generated using tetraethylorthosilicate (TEOS) and network modifying organosilanes:dimethoxydimethylsilane (DMDMS) or dimethoxydiphenylsilane (DMDPS) in a 1:1 mass ratio. Two curcumin derivatives were embedded in siloxane matrices, a yellow one (CY) that is identical to bis-demethoxycurcumin (one of the natural constituents in turmeric) and a red dye (CR) that has a N,N-dimethylamino group grafted in position 4 of the dicinnamoylmethane skeleton of curcumin. The nanocomposites obtained by embedding curcumin derivatives in siloxane matrices were deposited on cotton fabric and studied in relation to the dye and the type of host matrix. Fabrics coated with such systems provide a hydrophobic surface, have fluorescent and antimicrobial properties, change color depending on the pH, and therefore can be used in various fields where textiles provide signaling properties, self-cleaning, or antibacterial protection. The coated fabrics maintained their good multifunctional properties even after several washing cycles.
    Type of Medium: Online Resource
    ISSN: 2310-2861
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2813982-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...