GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 941, No. 2 ( 2022-12-01), p. L23-
    Abstract: Characterizing the physical conditions at disk scales in class 0 sources is crucial for constraining the protostellar accretion process and the initial conditions for planet formation. We use ALMA 1.3 and 3 mm observations to investigate the physical conditions of the dust around the class 0 binary IRAS 16293–2422 A down to ∼10 au scales. The circumbinary material’s spectral index, α , has a median of 3.1 and a dispersion of ∼0.2, providing no firm evidence of millimeter-sized grains therein. Continuum substructures with brightness temperature peaks of T b ∼ 60–80 K at 1.3 mm are observed near the disks at both wavelengths. These peaks do not overlap with strong variations of α , indicating that they trace high-temperature spots instead of regions with significant optical depth variations. The lower limits to the inferred dust temperature in the hot spots are 122, 87, and 49 K. Depending on the assumed dust opacity index, these values can be several times higher. They overlap with high gas temperatures and enhanced complex organic molecular emission. This newly resolved dust temperature distribution is in better agreement with the expectations from mechanical instead of the most commonly assumed radiative heating. In particular, we find that the temperatures agree with shock heating predictions. This evidence and recent studies highlighting accretion heating in class 0 disks suggest that mechanical heating (shocks, dissipation powered by accretion, etc.) is important during the early stages and should be considered when modeling and measuring properties of deeply embedded protostars and disks.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 573 ( 2015-1), p. A63-
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Astronomical Society ; 2021
    In:  The Astrophysical Journal Vol. 917, No. 2 ( 2021-08-01), p. 82-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 917, No. 2 ( 2021-08-01), p. 82-
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2021
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Astrophysical Journal, American Astronomical Society, Vol. 926, No. 2 ( 2022-02-01), p. 190-
    Abstract: We compare observations of H i from the Very Large Array (VLA) and the Arecibo Observatory and observations of HCO + from the Atacama Large Millimeter/submillimeter Array (ALMA) and the Northern Extended Millimeter Array (NOEMA) in the diffuse ( A V ≲ 1) interstellar medium (ISM) to predictions from a photodissociation region (PDR) chemical model and multiphase ISM simulations. Using a coarse grid of PDR models, we estimate the density, FUV radiation field, and cosmic-ray ionization rate (CRIR) for each structure identified in HCO + and H i absorption. These structures fall into two categories. Structures with T s 〈 40 K, mostly with N (HCO + ) ≲ 10 12 cm −2 , are consistent with modest density, FUV radiation field, and CRIR models, typical of the diffuse molecular ISM. Structures with spin temperature T s 〉 40 K, mostly with N (HCO + ) ≳ 10 12 cm −2 , are consistent with high density, FUV radiation field, and CRIR models, characteristic of environments close to massive star formation. The latter are also found in directions with a significant fraction of thermally unstable H i . In at least one case, we rule out the PDR model parameters, suggesting that alternative mechanisms (e.g., nonequilibrium processes like turbulent dissipation and/or shocks) are required to explain the observed HCO + in this direction. Similarly, while our observations and simulations of the turbulent, multiphase ISM agree that HCO + formation occurs along sight lines with N (H I) ≳ 10 21 cm −2 , the simulated data fail to explain HCO + column densities ≳ few × 10 12 cm −2 . Because a majority of our sight lines with HCO + had such high column densities, this likely indicates that nonequilibrium chemistry is important for these lines of sight.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Astronomical Society ; 2015
    In:  The Astrophysical Journal Vol. 806, No. 1 ( 2015-06-05), p. 31-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 806, No. 1 ( 2015-06-05), p. 31-
    Type of Medium: Online Resource
    ISSN: 1538-4357
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2015
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Astronomical Society ; 2022
    In:  The Astrophysical Journal Vol. 940, No. 2 ( 2022-12-01), p. 188-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 940, No. 2 ( 2022-12-01), p. 188-
    Abstract: A big question in the field of star and planet formation is the time at which substantial dust grain growth occurs. The observed properties of dust emission across different wavelength ranges have been used as an indication that millimeter-sized grains are already present in the envelopes of young protostars. However, this interpretation is in tension with results from coagulation simulations, which are not able to produce such large grains in these conditions. In this work, we show analytically that the production of millimeter-sized grains in protostellar envelopes is impossible under the standard assumptions about the coagulation process. We discuss several possibilities that may serve to explain the observed dust emission in the absence of in situ grain growth to millimeter sizes.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Supplement Series Vol. 264, No. 1 ( 2023-01-01), p. 10-
    In: The Astrophysical Journal Supplement Series, American Astronomical Society, Vol. 264, No. 1 ( 2023-01-01), p. 10-
    Abstract: We present an efficient heating/cooling method coupled with chemistry and UV radiative transfer that can be applied to numerical simulations of the interstellar medium (ISM). We follow the time-dependent evolution of hydrogen species (H 2 , H, H + ), assume carbon/oxygen species (C, C + , CO, O, and O + ) are in formation–destruction balance given the nonsteady hydrogen abundances, and include essential heating/cooling processes needed to capture the thermodynamics of all ISM phases. UV radiation from discrete point sources and the diffuse background is followed through adaptive ray tracing and a six-ray approximation, respectively, allowing for H 2 self-shielding; cosmic-ray heating and ionization are also included. To validate our methods and demonstrate their application for a range of density, metallicity, and radiation fields, we conduct a series of tests, including the equilibrium curves of thermal pressure versus density, the chemical and thermal structure in photodissociation regions, H i -to-H 2 transitions, and the expansion of H ii regions and radiative supernova remnants. Careful treatment of photochemistry and cosmic-ray ionization is essential for many aspects of ISM physics, including identifying the thermal pressure at which cold and warm neutral phases coexist. We caution that many current heating and cooling treatments used in galaxy formation simulations do not reproduce the correct thermal pressure and ionization fraction in the neutral ISM. Our new model is implemented in the MHD code Athena and incorporated in the TIGRESS simulation framework, for use in studying the star-forming ISM in a wide range of environments.
    Type of Medium: Online Resource
    ISSN: 0067-0049 , 1538-4365
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2006860-8
    detail.hit.zdb_id: 2207650-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Astrophysical Journal, American Astronomical Society, Vol. 950, No. 2 ( 2023-06-01), p. 119-
    Abstract: The CO-to-H 2 conversion factor ( α CO ) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower α CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner ∼2 kpc of NGC 3627 and NGC 4321 tracing 12 CO, 13 CO, and C 18 O lines on ∼100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of α CO . The central 300 pc nuclei in both galaxies show strong enhancement of temperature T k ≳ 100 K and density n H 2 〉 10 3 cm −3 . Assuming a CO-to-H 2 abundance of 3 × 10 −4 , we derive 4–15 times lower α CO than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of α CO with low- J 12 CO optical depths ( τ CO ), as well as an anticorrelation with T k . The τ CO correlation explains most of the α CO variation in the three galaxy centers, whereas changes in T k influence α CO to second order. Overall, the observed line width and 12 CO/ 13 CO 2–1 line ratio correlate with τ CO variation in these centers, and thus they are useful observational indicators for α CO variation. We also test current simulation-based α CO prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Astronomical Society ; 2017
    In:  The Astrophysical Journal Vol. 843, No. 1 ( 2017-06-29), p. 38-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 843, No. 1 ( 2017-06-29), p. 38-
    Type of Medium: Online Resource
    ISSN: 1538-4357
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2017
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Astronomical Society ; 2023
    In:  The Astrophysical Journal Vol. 946, No. 1 ( 2023-03-01), p. 3-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 946, No. 1 ( 2023-03-01), p. 3-
    Abstract: Massive, young stars are the main source of energy that maintains multiphase structure and turbulence in the interstellar medium (ISM), and without this “feedback” the star formation rate (SFR) would be much higher than is observed. Rapid energy loss in the ISM and efficient energy recovery by stellar feedback lead to coregulation of SFRs and the ISM state. Realistic approaches to this problem should solve for the dynamical evolution of the ISM, including star formation and the input of feedback energy self-consistently and accurately. Here, we present the TIGRESS-NCR numerical framework, in which UV radiation, supernovae, cooling and heating processes, and gravitational collapse are modeled explicitly. We use an adaptive ray-tracing method for UV radiation transfer from star clusters represented by sink particles, accounting for attenuation by dust and gas. We solve photon-driven chemical equations to determine the abundances of hydrogen (time dependent) and carbon/oxygen-bearing species (steady state), which then set cooling and heating rates self-consistently. Applying these methods, we present high-resolution magnetohydrodynamics simulations of differentially rotating local galactic disks representing typical conditions of nearby star-forming galaxies. We analyze ISM properties and phase distributions and show good agreement with existing multiwavelength galactic observations. We measure midplane pressure components (turbulent, thermal, and magnetic) and the weight, demonstrating that vertical dynamical equilibrium holds. We quantify the ratios of pressure components to the SFR surface density, which we call the feedback yields . The TIGRESS-NCR framework will allow for a wide range of parameter exploration, including in low-metallicity systems.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...