GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: JAMA, American Medical Association (AMA), Vol. 326, No. 11 ( 2021-09-21), p. 1024-
    Type of Medium: Online Resource
    ISSN: 0098-7484
    RVK:
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2021
    detail.hit.zdb_id: 2958-0
    detail.hit.zdb_id: 2018410-4
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Pediatrics, Elsevier BV, Vol. 233 ( 2021-06), p. 26-32.e6
    Type of Medium: Online Resource
    ISSN: 0022-3476
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2005245-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Pediatrics, Elsevier BV, Vol. 177 ( 2016-10), p. 144-152.e6
    Type of Medium: Online Resource
    ISSN: 0022-3476
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2005245-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Gastroenterology and Hepatology, Elsevier BV, Vol. 19, No. 8 ( 2021-08), p. 1564-1572.e5
    Type of Medium: Online Resource
    ISSN: 1542-3565
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2013
    In:  Pharmaceuticals Vol. 6, No. 9 ( 2013-09-23), p. 1145-1169
    In: Pharmaceuticals, MDPI AG, Vol. 6, No. 9 ( 2013-09-23), p. 1145-1169
    Type of Medium: Online Resource
    ISSN: 1424-8247
    Language: English
    Publisher: MDPI AG
    Publication Date: 2013
    detail.hit.zdb_id: 2193542-7
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 553-553
    Abstract: Abstract 553 Egress of hematopoietic stem and progenitor cells (HSPC) from the bone marrow (BM) reservoir to the circulation in steady state conditions is a key requirement for normal hematopoiesis. It is dramatically enhanced by G-CSF-induced mobilization, which is widely used for clinical HSPC transplantation. An interplay between cytokines, chemokines (mainly SDF-1 (CXCL12) and its major receptor CXCR4), adhesion molecules, matrix metalloproteinases and neurotransmitters, tightly regulate HSPC egress and mobilization. Recent observations indicate an essential role for sphingolipids, and particularly sphingosine-1-phosphate (S1P) and its major receptor S1P1 in leukocyte trafficking in vivo. Furthermore, several pharmacological agents that target S1P and S1P1 attenuate development of autoimmune and cardiovascular diseases as well as cancer. Based on these findings, we hypothesized that HSPC motility, both in steady state and in stress-induced conditions, is regulated by S1P/S1P1 signaling. We found that cells expressing S1P1 receptor are mainly located near sinusoids in the murine BM, suggesting involvement of S1P/S1P1 axis in HSPC steady state egress. To identify the role of S1P1 in HSPC homeostatic release, we injected mice with the inhibitor FTY720 and discovered a significant decrease in primitive Sca-1+/c-Kit+/Lineage- (SKL) cell numbers in the peripheral blood along with their accumulation in the BM, 24 hr post a single i.p injection. To examine the S1P/S1P1 axis involvement in stress induced mobilization, we tested S1P levels following G-CSF administration. S1P concentrations were decreased in BM supernatants and increased in the peripheral blood, suggesting the formation of a gradient towards the blood, with a potential HSPC mobilization capacity. Accordingly, a 5-fold decreased transcription level of sphingosine kinase 1 (Sphk1, S1P producing enzyme) and a milder increased transcription level of sphingosine phosphatase 1 (SPP1, S1P degrading enzyme) were observed in the BM of G-CSF treated mice. These changes in both S1P modulating enzymes expression levels were mediated by mTOR signaling, independent of the PI3K pathway. Another effect of G-CSF mobilization was enhancing the percentage of BM HSPC expressing surface S1P1 receptor, which was abolished upon inhibition of mTOR by Rapamycin. These findings imply that the reduction in S1P BM levels enabled increased S1P1 receptor expression and HSPC recruitment to the blood. Co-injections of FTY720 with G-CSF revealed decreased numbers of primitive SKL and immature colony-forming cells in the blood, indicating reduced HSPC mobilization. Accordingly, administration of G-CSF to Sphk1 KO mice, which have low S1P plasma concentrations, led to decreased mobilization of primitive SKL cells and progenitors to the blood. We also investigated the cross talk between S1P/S1P1 and SDF-1/CXCR4 axes. Disruption of the S1P/S1P1 axis during G-CSF administration (by co-injections of FTY720 or by using Sphk1 KO mice) reduced HSPC mobilization however, BM mononuclear cells obtained from these mice exhibited enhanced migration to a gradient of SDF-1 in vitro. These results imply that SDF-1/CXCR4 activation is not sufficient for HSPC mobilization. Previously, we have shown that CXCR4 neutralizing antibodies co-administrated on days 4 and 5 of G-CSF treatment, significantly but not completely inhibited HSPC mobilization (Petit et al., Nat Immunol, 2002). Interestingly, such treatment in Sphk1 KO mice completely inhibited mobilization and increased primitive SKL cells in the BM. These results suggest that S1P/S1P1 axis has an important role in parallel to SDF-1/CXCR4 axis during stress-induced mobilization since inactivation of both pathways resulted in total abrogation of HSPC recruitment to the blood. Finally, we show that S1P can inhibit SDF-1 transcription in murine BM stromal cells via activation of the p38/Akt/mTOR signaling pathway. Since SDF-1 reduction in the BM is essential for HSPC mobilization, S1P-induced inhibition of its transcription allows the progenitor cells to detach and migrate. Taken together, our findings reveal involvement of S1P and its major receptor S1P1 in HSPC egress and stress-induced mobilization. These findings may help broaden our understanding regarding the mechanisms behind HSPC motility and thus improve clinical mobilization protocols and drug development based on targeting the S1P/S1P1 axis. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 890-890
    Abstract: Rapid mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) to the peripheral blood by anti-CXCR4 agents such as AMD3100 is a complex process, which requires CXCL12 secretion, activation of proteolytic enzymes and supporting cellular compartments (Dar et. al, Leukemia 2011). Notably, components of innate immune system were also shown to be involved (Ratajczak et. al, Leukemia 2010). Human β-defensin-3 (hBD3) is an antimicrobial peptide possessing also anti-CXCR4 effects on human T cells in vitro (Feng et. al, JI 2006), suggesting its HSPC mobilizing potential. Here, we describe a novel approach for targeting CXCR4 in vivo by utilizing β-defensin-derived peptides, resulting in rapid HSPC mobilization. Results While AMD3100 blocked CXCL12-mediated signaling and migration of enriched BM mononuclear cells (MNCs) in vitro, we unexpectedly detected rapid phosphorylation of AKT, p38 and ERK1/2 in BM stromal cells (BMSCs). Interestingly, single administration of AMD3100 to mice resulted in enhancement of CXCR4 phosphorylation within minutes in both BM residing mesenchymal stem/progenitor cells (MSCs) and HSPCs, thus suggesting a CXCR4 agonistic activity. Aiming to test HSPC mobilizing potential of hBD3 and avoiding potential toxicity of systemic administration, we synthesized short linear peptides, comprising the C-terminal parts of hBD3 and the murine ortholog β-defensin-14 (mBD14), as well as a cyclic peptide of hBD3, comprising the same amino acids as the linear one, to serve as a control. All full-length β-defensins and tested peptides (both linear and cyclic) specifically bound CXCR4 (demonstrated by docking approach and anti-CXCR4 antibody competition assay) and efficiently blocked CXCL12-mediated activity of enriched BM MNCs in vitro including cell migration and CXCR4-dependent HIV infection. Intriguingly, full-length β-defensins and derived linear peptides (but not cyclic) revealed a strong stimulatory effect on BMSCs in vitro: triggering phosphorylation of AKT, p38 and ERK1/2 along with enhancing secretion of functional CXCL12. Administration of linear peptides to mice led to a fast activation of CXCR4 signaling in BMSCs and MSCs as well as in HSPCs accompanied by CXCL12 release to the circulation, increased activity of proteolytic enzymes and consequent rapid mobilization of progenitors as well as long-term repopulating stem cells. In addition, linear peptides augmented AMD3100-induced rapid mobilization. Importantly, the control cyclic peptide, which bound CXCR4 but failed to activate BMSCs in vitro, did not induce HSPC mobilization in vivo. Moreover, it inhibited both steady-state egress and AMD3100-induced mobilization of HSPCs. A series of in vivo inhibitory analyses confirmed dependence of hBD3- and mBD14-derived peptide-induced HSPC mobilization on the activation of CXCL12/CXCR4 axis and revealed involvement of uPA and JNK signaling as well as ROS generation. Conclusions Our study demonstrated for the first time the capability of β-defensin-derived peptides to activate in vivo CXCL12/CXCR4 signaling in both hematopoietic and non-hematopoietic BM cells, leading to rapid HSPC mobilization. We suggest that activation of CXCR4 signaling in non-hematopoietic BM cells is crucial for inducing HSPC mobilization. Accordingly, CXCR4-binding agents capable of triggering CXCR4 signaling in non-hematopoietic BM cells in vitro, would induce rapid HSPC mobilization. The results presented here help to better understand the mechanisms of rapid HSPC mobilization and have the potential of improving existing clinical protocols to increase the yield of HSPC harvest for transplantation. Disclosures: Scadden: Fate Therapeutics: Consultancy, Equity Ownership.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2010
    In:  Blood Vol. 116, No. 21 ( 2010-11-19), p. 1553-1553
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 1553-1553
    Abstract: Abstract 1553 One of the hallmarks of hematopoietic stem and progenitor cells (HSPC) is their motility. In steady state, HSPC are mostly retained in the bone marrow (BM), allowing ongoing hematopoiesis, concomitantly with slow release to the circulation as part of homeostasis and host defense mechanisms. While stress-induced recruitment and clinical mobilization processes are extensively studied, steady state egress mechanisms are poorly understood. In this study, we demonstrate that inhibition of Glycogen Synthase Kinase 3b (GSK3β) directly or via upstream Insulin-like Growth Factor-1 (IGF-1) signaling limited murine HSPC egress to the circulation. Indeed, inhibition of GSK3β resulted in reduced HSPC migration capacity towards a gradient of the chemokine stromal derived factor-1 (SDF-1, also termed CXCL12) in vitro and was found to reduce HSPC mobilization by IGF-1 receptor antagonist treatment. Interestingly, GSK3β signaling also regulated SDF-1 transcription by BM stromal cells in vitro and in vivo, probably as part of HSPC maintenance, since murine CXCR4 signaling is essential for hematopoietic stem cell quiescence. We revealed that the involvement of GSK3β in directional HSPC motility is mediated by the downstream phosphodiesterase Prune. Prune, which is over-expressed in several human cancers, was recently found to localize in focal adhesion sites, promoting the motility of malignant cells. Herein, we show that Prune is also expressed in normal leukocytes, including HSPC. Accordingly, inhibition of Prune resulted in reduced SDF-1 induced migration of murine HSPC in vitro as well as reduced steady state egress in vivo. Prune activity was also shown to regulate the actin cytoskeleton by contributing to its polymerization. In general, highly regulated actin turnover is essential for spontaneous and directional motility mechanisms. Altogether, we present GSK3β and Prune as novel players in physiological HSPC motility, dictating an active rather than passive nature for steady state egress from the BM reservoir to the blood circulation as part of homeostasis. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 872-872
    Abstract: Hematopoietic stem cell/progenitor (HSCP) transplantation (HSCT) is routinely used for the treatment of cancer and inborn hematopoietic defects. The bone marrow (BM) microenvironment (ME) is a major regulator of hematopoietic function and fate. Clinical data supports osteoblastic regeneration after HSCT despite the inability of BM mesenchymal stem cells (BM-MSC) to engraft. Therefore, understanding the hematopoietic-dependent mechanisms controlling ME mesenchymal regeneration is expected to provide molecular targets for intervention in the context of HSCT. Hematopoietic connexin-43 (H-Cx43) mediates HSCP survival and efficient blood formation by scavenging damaging excess reactive oxygen species (ROS) through transfer to BM mesenchymal stromal cells (BM-MSC) after chemotherapy, preventing lethal hematopoietic failure (Taniguchi-Ishikwawa E et al., PNAS 2012), while the expression of Cx43 on BM-MSC regulates CXCL12 secretion and HSCP homeostasis (Schajnovitz A et al., Nat. Immunol., 2011). Since Cx43 is expressed in mitochondria, we hypothesized that H-Cx43 mediated ROS transfer upon stress depends on hematopoietic mitochondria transfer and uptake by the BM-MSC. We created chimeric mice by transplanting Vav1-CreTg/-, Cox8 mitochondrial localization signal-Dendra2Tg/- wild-type (mDendra2/WT) or Cx43fl/fl(mDendra2/Cx43Δ/Δ) HSCP to lethally irradiated, congenic WT mice and assessed the recovery of stromal cell regeneration via transfer of mitochondria to BM-MSC. H-Cx43Δ/Δchimeric mice have delayed lympho-hematopoietic recovery after irradiation or chemotherapy which can be reversed by restoration of hematopoietic Cx43 expression. H-Cx43Δ/Δchimeric mice exhibit decreased (~60-80%) and delayed colony-forming-unit-fibroblast (CFU-F) and osteoblast (CFU-Ob) regeneration and hematopoietic recovery. The delayed hematopoietic response in H-Cx43Δ/Δchimeras associated with ~40% reduction in mitochondrial transfer from HSCP to Lin-/CD45-/PDGFRα+/Sca1- BM stromal cells (MSC/P). Reverse transplantation experiments indicate that stromal Cx43 is dispensable for mitochondrial transfer from BM stroma to HSCP. Impaired mitochondrial uptake in H-Cx43Δ/Δchimeras associated with ~30-40% decreased mitochondrial ROS (mROS), membrane potential (MMP) and proliferation (assessed by in vivo BrdU uptake) of recipient MSC/P, suggesting that the transferred mitochondria reprogram the recipient mesenchymal progenitor metabolism. Defects of mitotransfer from H-Cx43Δ/ΔHSCP to BM MSC/P and in recipient BM MSC/P mitochondrial activity were recapitulated in in vitro co-cultures. Interestingly, intracellular [ATP] is upregulated (~2 fold) in MSC/P from chimeric H-Cx43Δ/ΔBM that received donor-derived mitochondria, as compared to donor mitochondria containing MSC/P from WTchimeras. Hemichannel opening causes loss of ATP, we therefore speculated that ATP released from MSC/P upon irradiation and transplantation is uptaken by HSPC, activating mitochondrial transfer as part of BM regeneration. Forced glycolysis-dependent restoration of [ATP] in MSC/P but not in HSCP enhances transfer of mitochondria from HSCP to MSC/P, suggesting that BM stromal [ATP] is an irradiation-responsive positive regulator of mitochondria transfer. Hemichannel-derived exogenous ATP suppresses AMPK activation, which regulates cellular metabolic homeostasis by modulating mitochondrial ROS, mitochondria dynamics and the fate of mitochondria. We found that MSC/P recipient of H-Cx43Δ/Δ mitochondria have increased AMPK activity as assessed by increased phosphorylation of AMPK and its downstream effectors ULK1 and ACC (~2-fold) when compared with MSC/P recipient of H-WT mitochondria, whereas MSC/P containing no donor-derived mitochondria from either chimeric mice are insensitive to the effect of Cx43 deficiency. In vivo administration of the AMPK inhibitor BML-275 dramatically increased the mitochondria transfer from HSCP to MSC/P in WT and H-Cx43Δ/Δ chimeras, and completely restores the negative effect of H-Cx43 deficiency on BM mesenchymal and hematopoietic regeneration. Our data indicate that hematopoietic mitochondrial Cx43 is required to control both mitochondrial transfer and BM ME energetic balance and regeneration after myeloablative irradiation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 771-771
    Abstract: The CXCR4/CXCL12 axis is essential for retention and protection from DNA damage of quiescent hematopoietic stem cells (HSC) in their bone marrow (BM) niches. Murine CXCR4+ HSC tightly adhere to BM stromal cells which functionally express cell surface CXCL12. Stress induces secretion of CXCL12 by BM stromal cells and its release to the circulation, mediating hematopoietic stem and progenitor cell (HSPC) egress, recruitment and clinical mobilization. Previously, we reported that Prostaglandin E2 (PGE2), highly produced by COX-2+ BM αSMA+ monocyte/macrophages, upregulates surface CXCR4 expression on enriched human CD34+ HSPC and their CXCL12 induced motility via cAMP activation in vitro. PGE2 inhibits intracellular reactive oxygen species (ROS) generation in HSPC and also increases membrane bound CXCL12 expression by BM stromal cells leading to HSC adhesion to their niche supporting cells in vivo, overall contributing to BM stem cell retention. We also found that elevation in cAMP activation promotes CXCL12 secretion from BM stromal cells, and another report has recently shown that lactate signaling via its major receptor HCA-1 inhibits cAMP. Thus, we hypothesized that the major metabolite lactate, cAMP and PGE2 cross-regulate BM stem cell retention by modulating the CXCR4/CXCL12 axis. We found that both hematopoietic stem cells and BM stromal cells functionally express the lactate receptor HCA-1. Stimulation with PGE2 elevated lactate production by BM stromal cells and stimulation with a HCA-1 receptor agonist, or with lactate, both elevated membrane bound expression of CXCL12 on BM stromal cells. Moreover, since cAMP is elevated by PGE2 signaling whereas lactate signaling was shown to inhibit cAMP, we tested the role of cAMP in CXCL12 expression and secretion by BM stromal cells. We found that in vitro the cAMP enhancer forskolin increased CXCR4 expression by HSPC and in vivo forskolin administration reduced membrane bound CXCL12 levels and elevated CXCL12 secretion as expected. Conversely, in vivo forskolin co-administered with lactate, elevated membrane bound CXCL12 levels and reduced CXCL12 secretion, indicating that lactate limits cAMP elevation and promotes surface CXCL12 expression by BM stromal cells. In accordance,inhibition of cAMP under PGE2 stimulation both in vitro and in vivo, augmented membrane bound CXCL12 expression and inhibited CXCR4 upregulation, mimicking the effects of lactate. We found that PGE2 administration in vivo resulted in reduced CXCR4 expression on primitive BM HSPCs however in vitro PGE2 elevated CXCR4 expression on enriched HSPC. Our results suggest that PGE2 signaling in vivo induces secretion of the metabolite lactate by BM stromal cells, increasing membrane bound CXCL12 expression and reducing expression of CXCR4 on HSPC via cAMP inhibition. Importantly, repeated in vivo administration of PGE2, lactate or its receptor HCA-1 agonist (once daily for 2 days), all reduced CXCR4 expression and steady state egress of HSPC to the bloodcirculation. Thus, PGE2 via downstream lactate secretion acts as a BM stem cell retaining factor. In accordance, we found that in vivo inhibition of PGE2 production by repeated (once daily for five days) injections of COX-2 inhibitors, such as Meloxicam led to HSPC mobilization. This mobilization was abrogated by co-administration of lactate, suggesting that in vivo inhibition of meloxicam induced CXCL12 secretion and release by lactate prevents HSPC mobilization. We found that in vivo COX-2 inhibition reduced membrane expression of CXCL12 by BM stromal cells and elevated surface CXCR4 expression by BM HSPC in a ROS dependent manner. Moreover, neutralization of CXCR4 or CXCL12 by specific antibodies, or ROS by its scavenger NAC, all blocked meloxicam induced stem and progenitor cell mobilization. These results reveal that COX-2 inhibition increased BM CXCL12 secretion and its release to the blood, upregulated CXCR4 leading to HSPC mobilization in a ROS and CXCL12 dependent manner. In conclusion, our results reveal that PGE2 enhances both cAMP elevation and lactate secretion by BM stromal cells in the vicinity of hematopoietic stem cells. Lactate acts in an autocrine manner modulating surface CXCL12 expression by BM niche cells and reduced CXCR4 expression by hematopoietic stem cells via inhibition of cAMP, promoting retention and preservation of hematopoietic stem cells in their BM niches. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...