GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2003
    In:  Eos, Transactions American Geophysical Union Vol. 84, No. 23 ( 2003-06-10), p. 215-215
    In: Eos, Transactions American Geophysical Union, American Geophysical Union (AGU), Vol. 84, No. 23 ( 2003-06-10), p. 215-215
    Abstract: The expected response of the Earth's cryosphere to global warming is a critical open research area in which model certainty is still unsatisfactory On the other hand, past climate history can teach us quite a bit. If one had returned from a vacation to find that the freezer door was left partially open and ice had collected in it, one would have learned an important climate lesson: ice does not form when conditions are merely cold, but when there is a supply of warm, moist air to a sufficiently cold environment. While it is good practice to close one's freezer door and not experience this climate lesson personally, numerous observations and model results demonstrate that the large ice sheets that developed during past ice ages grew when the climate was relatively warm, and therefore moist. One must conclude that statements such as “…glaciers grow when climate is cold, not warm and moist” [Rahmstorf, 2002] contradicts a large body of scientific evidence, observations, and dynamical arguments. We now understand that the ocean also plays an important role in this feedback due to the role of sea ice in glacial dynamics.
    Type of Medium: Online Resource
    ISSN: 0096-3941 , 2324-9250
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2003
    detail.hit.zdb_id: 24845-9
    detail.hit.zdb_id: 2118760-5
    detail.hit.zdb_id: 240154-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Royal Society ; 2003
    In:  Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences Vol. 361, No. 1810 ( 2003-09-15), p. 1935-1944
    In: Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 361, No. 1810 ( 2003-09-15), p. 1935-1944
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2003
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2006
    In:  Journal of Climate Vol. 19, No. 20 ( 2006-10-15), p. 5031-5057
    In: Journal of Climate, American Meteorological Society, Vol. 19, No. 20 ( 2006-10-15), p. 5031-5057
    Abstract: This paper briefly surveys areas of paleoclimate modeling notable for recent progress. New ideas, including hypotheses giving a pivotal role to sea ice, have revitalized the low-order models used to simulate the time evolution of glacial cycles through the Pleistocene, a prohibitive length of time for comprehensive general circulation models (GCMs). In a recent breakthrough, however, GCMs have succeeded in simulating the onset of glaciations. This occurs at times (most recently, 115 kyr b.p.) when high northern latitudes are cold enough to maintain a snow cover and tropical latitudes are warm, enhancing the moisture source. More generally, the improvement in models has allowed simulations of key periods such as the Last Glacial Maximum and the mid-Holocene that compare more favorably and in more detail with paleoproxy data. These models now simulate ENSO cycles, and some of them have been shown to reproduce the reduction of ENSO activity observed in the early to middle Holocene. Modeling studies have demonstrated that the reduction is a response to the altered orbital configuration at that time. An urgent challenge for paleoclimate modeling is to explain and to simulate the abrupt changes observed during glacial epochs (i.e., Dansgaard–Oescher cycles, Heinrich events, and the Younger Dryas). Efforts have begun to simulate the last millennium. Over this time the forcing due to orbital variations is less important than the radiance changes due to volcanic eruptions and variations in solar output. Simulations of these natural variations test the models relied on for future climate change projections. They provide better estimates of the internal and naturally forced variability at centennial time scales, elucidating how unusual the recent global temperature trends are.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Physical Oceanography Vol. 46, No. 8 ( 2016-08), p. 2269-2284
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 46, No. 8 ( 2016-08), p. 2269-2284
    Abstract: The Gulf of Eilat/Aqaba is a terminal, elongated basin that exchanges water with the northern Red Sea via the Straits of Tiran. This study used energy budgets of mean kinetic energy (MKE) and eddy kinetic energy (EKE; differentiated by a simple horizontal averaging filter), instability analysis, and numerical simulations to study the horizontal circulation of the gulf, which is characterized by the existence of a chain of eddies along its main axis. The kinetic energy is predominantly in the form of EKE. Energy conversion between MKE and EKE is negligible where the main sources for both energy reservoirs are the conversions from the available potential energy (APE). This term is balanced by the work done by pressure at the straits in case of MKE and by dissipation in the case of EKE. The MKE balance represents the coupling between the exchange flow at the straits and the wintertime dense water formation. The dense water exits through the straits while sinking adiabatically along the gulf. The strong variation in the shoreline/bathymetry triggers a baroclinic instability that enhances the eddy activity in the gulf. Thus, the baroclinic instability is an effective mechanism that transfers energy from the APE to the EKE. The EKE–APE conversion term involves vertical adiabatic motions that occur through the upwelling of relatively warm water in anticyclonic circulation regions and downwelling of colder water in adjacent regions with cyclonic circulation. Through these processes, the horizontal circulation is powered by the energy transferred from the APE. This explains the coupling between the temperature gradient and the eddy formation along the gulf.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Physical Oceanography Vol. 52, No. 7 ( 2022-07), p. 1471-1482
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 52, No. 7 ( 2022-07), p. 1471-1482
    Abstract: The intraseasonal oscillations (ISOs) in sea currents in the eastern Mediterranean Sea near the central coast of Israel were analyzed by examining the velocity components of the sea currents at different depths as measured by acoustic Doppler current profilers located at various depths between 0 and 675 m. The total period covered by the observations was from December 2016 to May 2018. Prominent intraseasonal oscillations, much stronger than tidal velocity components, were observed in the upper part of the sea, at 30–70 m. The amplitudes of these oscillations are between 4 and 10 cm s −1 and their periods are 7, 11, 22, and 34–36 days. The strongest oscillations are found in the boreal winter. The ISOs in the sea currents were apparently induced by corresponding oscillations found in atmospheric wind velocity over the eastern Mediterranean at the surface and at 500 and 250 hPa, as suggested by the high correlations, 0.6–0.9, between the wind velocity components of the oscillatory modes in the atmosphere and the velocity component of the oscillatory modes in the sea currents with similar periods. We propose that the source of the ISOs in the atmosphere over the eastern Mediterranean is the South Asian jet wave train. The track of this wave train passes over the eastern Mediterranean, and the periods of the ISOs in the wave train are in the same band as the oscillations found here. The wave train is equivalently barotropic and strongest in the upper troposphere. This property of the wave train can explain the high correlation found between the oscillatory modes of wind velocity at 250 or 500 hPa and those in the sea currents. In all the cases besides the 7-day oscillatory mode, the significant oscillatory modes found at 250 or 500 hPa are also significant in the velocity components of the surface wind.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 1 ( 2014-01-01), p. 24-43
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 1 ( 2014-01-01), p. 24-43
    Abstract: Between ~750 and 635 million years ago, during the Neoproterozoic era, the earth experienced at least two significant, possibly global, glaciations, termed “Snowball Earth.” While many studies have focused on the dynamics and the role of the atmosphere and ice flow over the ocean in these events, only a few have investigated the related associated ocean circulation, and no study has examined the ocean circulation under a thick (~1 km deep) sea ice cover, driven by geothermal heat flux. Here, a thick sea ice–flow model coupled to an ocean general circulation model is used to study the ocean circulation under Snowball Earth conditions. The ocean circulation is first investigated under a simplified zonal symmetry assumption, and (i) strong equatorial zonal jets and (ii) a strong meridional overturning cell are found, limited to an area very close to the equator. The authors derive an analytic approximation for the latitude–depth ocean dynamics and find that the extent of the meridional overturning circulation cell only depends on the horizontal eddy viscosity and β (the change of the Coriolis parameter with latitude). The analytic approximation closely reproduces the numerical results. Three-dimensional ocean simulations, with reconstructed Neoproterozoic continental configuration, confirm the zonally symmetric dynamics and show additional boundary currents and strong upwelling and downwelling near the continents.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Ocean Science Vol. 12, No. 3 ( 2016-05-27), p. 733-742
    In: Ocean Science, Copernicus GmbH, Vol. 12, No. 3 ( 2016-05-27), p. 733-742
    Abstract: Abstract. Nan-Wan Bay in Taiwan and the Gulf of Elat in Israel are two different coastal environments, and as such, their currents are expected to have different statistical properties. While Nan-Wan Bay is shallow, has three open boundaries, and is directly connected to the open ocean, the Gulf of Elat is deep, semi-enclosed, and connected to the Red Sea via the Straits of Tiran. Surface currents have been continuously measured with fine temporal (less than or equal to 1 h) and spatial resolution (less than or equal to 1 km) for more than a year in both environments using coastal radars (CODARs) that cover a domain of roughly 10  ×  10 km. These measurements show that the currents in Nan-Wan Bay are much stronger than those in the Gulf of Elat and that the mean current field in Nan-Wan Bay exhibits cyclonic circulation, which is stronger in the summer; in the Gulf of Elat, the mean current field is directed southward and is also stronger during the summer. We have compared the statistical properties of the current speeds in both environments and found that both exhibit large spatial and seasonal variations in the shape parameter of the Weibull distribution. However, we have found fundamental and significant differences when comparing the temporal asymmetry of the current speed (i.e., the ratio between the time during which the current speed increases and the total time). While the Nan-Wan Bay currents are significantly asymmetric, those of the Gulf of Elat are not. We then extracted the tidal component of the Nan-Wan Bay currents and found that it is strongly asymmetric, while the asymmetry of tidally filtered currents is much weaker. We thus conclude that the temporal asymmetry of the Nan-Wan Bay currents reported here is due to the strong tides in the region. We show that the asymmetry ratio in Nan-Wan Bay varies spatially and seasonally: (i) the currents increase rapidly and decay slowly in the northern part of the domain and vice versa in the southern part, and (ii) the asymmetry is stronger during summer.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2023-08-25)
    Abstract: The Cretaceous ‘greenhouse’ period (~145 to ~66 million years ago, Ma) in Earth’s history is relatively well documented by multiple paleoproxy records, which indicate that the meridional sea surface temperature (SST) gradient increased (non-monotonically) from the Valanginian (~135 Ma) to the Maastrichtian (~68 Ma). Changes in atmospheric CO 2 concentration, solar constant, and paleogeography are the primary drivers of variations in the spatiotemporal distribution of SST. However, the particular contribution of each of these drivers (and their underlying mechanisms) to changes in the SST distribution remains poorly understood. Here we use data from a suite of paleoclimate simulations to compare the relative effects of atmospheric CO 2 variability and paleogeographic changes on mid-latitudinal SST gradient through the Cretaceous. Further, we use a fundamental model of wind-driven ocean gyres to quantify how changes in the Northern Hemisphere paleogeography weaken the circulation in subtropical ocean gyres, leading to an increase in extratropical SSTs.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2020
    In:  Frontiers in Marine Science Vol. 7 ( 2020-12-15)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 7 ( 2020-12-15)
    Abstract: Five years in the making, a massive oil spill of 1 million barrels is imminent in the Red Sea off the coast of Yemen. Emergent action must be taken by the United Nations and its International Maritime Organization (IMO) to remove the oil, despite regional political tensions, as a spill will have disastrous environmental and humanitarian consequences, especially if it occurs during winter. With millions of barrels of oil passing through the Red Sea each day, a regional strategy must be drafted for leak prevention and containment that is specific to the Red Sea’s unique ecosystems, unusual water currents, and political landscape.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2014
    In:  Climate Dynamics Vol. 43, No. 3-4 ( 2014-8), p. 1001-1010
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 43, No. 3-4 ( 2014-8), p. 1001-1010
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...