GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Thoracic Oncology, Elsevier BV, Vol. 15, No. 6 ( 2020-06), p. 973-999
    Type of Medium: Online Resource
    ISSN: 1556-0864
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2432037-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Hepatology, Elsevier BV, Vol. 77 ( 2022-07), p. S672-
    Type of Medium: Online Resource
    ISSN: 0168-8278
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 605953-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: PROTEOMICS, Wiley, Vol. 14, No. 17-18 ( 2014-09), p. 1971-1976
    Abstract: As a direct consequence of the high diversity of the aggressive blood cancer acute myeloid leukemia (AML), proteomic samples from patients are strongly heterogeneous, rendering their accurate relative quantification challenging. In the present study, we investigated the benefits of using a super‐SILAC mix of AML derived cell lines as internal standard (IS) for quantitative shotgun studies. The Molm‐13, NB4, MV4‐11, THP‐1, and OCI‐AML3 cell lines were selected for their complementarity with regard to clinical, cytogenetic, and molecular risk factors used for prognostication of AML patients. The resulting IS presents a high coverage of the AML proteome compared to single cell lines allied with high technical reproducibility, thus enabling its use for AML patient comparison. This was confirmed by comparing the protein regulation between the five cell lines and by applying the IS to patient material; hence, we were able to reproduce specific functional regulations known to be related to disease progression and molecular genetic abnormalities. The MS proteomics data have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the dataset identifier PXD000441.
    Type of Medium: Online Resource
    ISSN: 1615-9853 , 1615-9861
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2037674-1
    detail.hit.zdb_id: 2032093-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 36, No. Supplement_1 ( 2021-05-29)
    Abstract: Interstitial fibrosis, characterised by the accumulation of extracellular matrix in the cortical interstitium, is directly correlated with progressive chronic kidney disease secondary to inflammatory, immunologic, obstructive or metabolic causes. An invariant histologic marker of this progression is the accumulation of fibroblasts, with the phenotypic appearance of activated myofibroblasts expressing alpha smooth muscle actin (αSMA) within intracellular contractile stress fibres. Once present, these myofibroblasts are prognostic indicators of expansion of fibrotic matrix and progressive tubular atrophy, leading towards end-stage disease. The Receptor Tyrosine Kinase AXL is involved in a range of kidney pathologies, with increased activity associated with Epithelial to Mesenchymal Transition (EMT) and tubular proliferation following podocyte loss. In mice treated with an angiotensin-converting enzyme (ACE) inhibitor, enhancement of AXL expression is localised to tubular segments within the medulla and there is evidence of parallel regulatory control of ACE and AXL. We have demonstrated enhanced expression of AXL and the mesenchymal marker, vimentin in diseased human kidney tissue secondary to diabetes or hypertension. Targeting AXL with a small-molecule inhibitor has previously been reported to attenuate fibrosis and reduce inflammation in the unilateral ureteric-outflow obstruction (UUO) model of kidney fibrosis in mice (Landolt et al., 2019). Tilvestamab is a novel function blocking humanized anti-AXL antibody. Tilvestamab blocks GAS6-mediated AXL receptor activation in fibroblasts and renal tubule epithelial cells and mediates AXL receptor internalization and degradation. In this study we aimed to further characterise AXL as a target in CKD and to investigate anti-fibrotic efficacy of tilvestamab. Method Eight weeks old male C57BL/6 mice underwent UUO operation. After 15 days, kidneys were dissociated and stained with a high dimensional single cell mass cytometry 33 markers antibody panel. Data were analysed using JMP Genomics (v.8.2). Precision Cut Kidney Slices (PCKSs) from explanted human kidney tissue were propagated in a bioreactor (Paish et al., 2019, FibroFind, UK). PCKS were incubated for 72hrs in the presence of investigational drugs. Secreted collagen1a1 were quantified by ELISA. RNA was reverse transcribed to cDNA and used in qPCRs to measure Col1a1 and αSMA. FFPE sections were stained for αSMA. High magnification images were taken of each slide and analysed for surface area covered by the stain. Results Expression pattern of AXL during development of kidney fibrosis in the UUO model was investigated using a mass cytometry antibody panel designed for identifying subpopulations of immune cells as well as cell populations of the fibrotic stroma. Two predominant cell populations were affected by ligation; the mesenchymal and the immune island. AXL was a marker characterising several of the key populations that expanded upon ligation supporting a role for AXL in kidney fibrosis pathogenesis. In an ex vivo model of human PCKS, tilvestamab dose-dependently reduced the levels of αSMA. When combined with the lower of two doses of the ACE inhibitor enalapril, the lowest dose of tilvestamab synergized to reduce αSMA levels further as well as reducing secreted Collagen 1a1. Conclusion AXL expression is induced in key cell populations during development of kidney fibrosis supporting AXL as a novel target in CKD. Tilvestamab represents a promising strategy for the pharmacologic intervention of kidney fibrosis, and the potential synergy with current reno-protective therapies warrants further exploration.
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1465709-0
    detail.hit.zdb_id: 90594-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2017
    In:  Nephrology Dialysis Transplantation Vol. 32, No. suppl_3 ( 2017-05-01), p. iii457-iii458
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 32, No. suppl_3 ( 2017-05-01), p. iii457-iii458
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 1465709-0
    detail.hit.zdb_id: 90594-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 4931-4931
    Abstract: Axl is a member of the Tyro3, Axl, Mer (TAM) receptor tyrosine kinase family that regulate a wide range of cellular functions, including cell survival, proliferation, migration/invasion and adhesion. Axl has been shown to play a key role in the survival and metastasis of many tumors, and has also been found to be upregulated and constitutively active in human AML. Indeed, Axl has been reported as an independent prognostic marker and a potential novel therapeutic target in AML. BGB324 is a first-in-class highly selective small molecule inhibitor of Axl. BGB324 has been shown to be safe and well tolerated in clinical safety studies in healthy volunteers at doses up to 1500 mg/day with a predictable PK profile and long plasma half-life, and is currently in phase I b clinical trials for AML and non-small cell lung cancer. In this study, we use phosphoflow cytometry to measure changes in signal transduction nodes in single AML cells treated with BGB324. We are applying this approach to monitor signaling profiles in primary AML cells harvested from patients undergoing BGB324 treatment. Results: The human AML cell line MOLM13 was treated in vitro with BGB324 (0.5 and 1µM for 1 hour) and analyzed for signal transduction changes by phosphoflow cytometry. We found a significant reduction in phosphorylation of Axl (pY779), Akt(pS473), Erk1/2(pT202/Y204) and PLCɣ1(pY783). Next we established a systemic MOLM13 preclinical AML model in NOD/SCID mice. The mice were treated with 25 or 50 mg/kg BGB324 until moribund (up to 16 days). We found a dose-dependent and significant increase in overall survival in BGB324-treated mice. We further investigated intracellular signaling in BGB324-treated cells in vivo. Mice carrying systemic AML disease (MOLM13) were treated with BGB324 at 50mg/kg for 4 days, and we monitored CD33/45-positive MOLM13 cells harvested from spleen and bone marrow by flow cytometry. BGB324-treated mice showed a significant reduction in pErk and pPLCɣ1 relative to mice in the control group. PBMCs from peripheral blood of AML patients treated with BGB324 400 mg x1 at day 1 and 2, and thereafter 100 mg daily were collected for single cell signal profiling of signal transduction changes by conventional flow cytometry (phospho-flow) and mass cytometry (CyTOF). Preliminary phopho-flow analyses show decrease of pAkt(T308) and pPLCgamma1(Y783) in one patient. Further analyses are ongoing and will be presented. Figure 1. In vitro response to 1 hour BGB324 treatment in human AML cell line MOLM13 at 0.5 and 1µM doses. Response was evaluated in pAxl, pErk1/2, pAkt and pPLCγ1. n=3, *p≤0.05, **p≤0.005. Figure 1. In vitro response to 1 hour BGB324 treatment in human AML cell line MOLM13 at 0.5 and 1µM doses. Response was evaluated in pAxl, pErk1/2, pAkt and pPLCγ1. n=3, *p≤0.05, **p≤0.005. Figure 2. Dose-dependent response in overall survival in a MOLM13 systemic xenograft model (n=10). Figure 2. Dose-dependent response in overall survival in a MOLM13 systemic xenograft model (n=10). Figure 3. Response to BGB324-treatment in pErk, pPLCγ1 and pAkt in CD33/CD45-positive cells harvested from spleens (left) and bone marrows (right) of mice with systemic MOLM13 xenografts. n=5, *p≤0.05, **p≤0.005. Figure 3. Response to BGB324-treatment in pErk, pPLCγ1 and pAkt in CD33/CD45-positive cells harvested from spleens (left) and bone marrows (right) of mice with systemic MOLM13 xenografts. n=5, *p≤0.05, **p≤0.005. Disclosures Hellesøy: BerGenBio AS: Other: Previous employee. Stock option holder. Wnuk-Lipinska:BerGenBio AS: Employment. Boniecka:BerGenBio AS: Employment. Nævdal:BerGenBio AS: Employment. Loges:BerGenBio: Honoraria, Other: travel support, Research Funding. Cortes:Teva: Research Funding; BMS: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; BerGenBio AS: Research Funding; Ariad: Consultancy, Research Funding; Astellas: Consultancy, Research Funding; Ambit: Consultancy, Research Funding; Arog: Research Funding; Celator: Research Funding; Jenssen: Consultancy. Lorens:BerGenBio AS: Employment, Equity Ownership. Micklem:BerGenBio AS: Employment, Equity Ownership. Gausdal:BerGenBio AS: Employment. Gjertsen:Haukeland University Hospital: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  BMC Cancer Vol. 13, No. 1 ( 2013-12)
    In: BMC Cancer, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2013-12)
    Type of Medium: Online Resource
    ISSN: 1471-2407
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2041352-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3995-3995
    Abstract: Axl is a receptor tyrosine kinase that has been shown to have a strong oncogenic potential in many cancer types. Overexpression and activation of Axl is found in many cancers, and is linked to increased proliferation, migration/invasion and resistance to apoptosis. Axl overexpression has been shown to be a poor prognostic marker, and recently overexpression of Axl has also been linked to the acquired resistance to chemotherapy and other anticancer therapies in many malignancies, including AML. BGB324 (BerGenBio AS) is a first-in-class highly specific small molecule inhibitor of Axl. BGB324 has been shown to be safe and well tolerated in a clinical safety trial in healthy volunteers at doses up to 1500 mg/day with a predictable PK profile and long plasma half-life, and is currently in a phase 1b clinical trial in patients with refractory/relapsed AML and MDS (BGBC003, ClinicalTrials.gov Identifier:NCT02488408; Loges S et al. J Clin Oncol 34, 2016 suppl; abstr 2561). 20 AML and 4 MDS patients have been treated at the following dose levels (loading dose/continuation dose): 400/100mg, 600/200mg and 900/300mg. Objective responses were observed in 2/4 MDS patients and 2/20 AML patients including one CR (AML). Enrollment continues to define MTD. The effect of BGB324 on intracellular signaling and the immune profile of leukemic blasts in patients treated in the clinical study was investigated using phospho-flow cytometry. Blasts were identified using surface markers (CD45low, CD66b-, CD38-, and CD117+ and/or CD34+), and the following direct and indirect downstream targets of Axl were explored: phosphorylated (p)-Akt(S473 and T308), pErk(T202/Y204), pp38(T180/Y182), pPLCγ1(Y783), pNFκB(S529), pCREB(S113) and pSTAT1(Y701), 3(Y705), 5(Y694)and 6(Y641). Preliminary analyses of blood samples from six patients show very rapid responses in signaling pathways downstream of Axl (including Akt, Erk, NFκB and PLCγ1) within hours or days of ingestion of the first dose, although the response patterns varies from patient to patient (Figure 1A). Two distinct blast populations were identified: one CD117+/CD34- and one CD117+/CD34+. In most patients the CD117+/CD34- population displayed the most extensive signaling changes during treatment, and this population also decreased during treatment with BGB324. In contrast, the CD117+/CD34+ population expanded during the course of the treatment (Figure 1B). White cell differential counts of peripheral blood from two patients treated with BGB324 for a prolonged period of time (15 weeks or more) showed a decrease in peripheral blast count, and a corresponding increase in granulocyte and monocyte counts, suggesting that Axl inhibition may push the blasts towards differentiation. The clinical trial is ongoing, and the signaling profile of leukemic blasts in blood and bone marrow of treated patients will be further examined by conventional phosphoflow cytometry and mass cytometry searching for signaling profiles with prognostic information. In conclusion, BGB324 has unique pharmacodynamic properties and molecular responses to exposure can be observed in peripheral blood leukemic blasts by phospho-flow cytometry within hours of ingestion of the first treatment dose. Further studies may establish whether single cell signal profiling can discriminate responders from non-responders and provide information about dose-response in a clinically meaningful way. Disclosures Cortes: Astellas: Research Funding; Arog: Research Funding; Teva: Research Funding; Pfizer: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Ariad: Consultancy, Research Funding; Ambit: Research Funding. Heuser:Novartis: Consultancy, Research Funding; Tetralogic: Research Funding; BerGenBio: Research Funding; Karyopharm Therapeutics Inc: Research Funding; Bayer Pharma AG: Research Funding; Celgene: Honoraria; Pfizer: Research Funding. Lorens:BerGenBio AS: Employment, Equity Ownership, Research Funding. Gausdal:BerGenBio AS: Employment. Micklem:BerGenBio AS: Employment, Equity Ownership. Gjertsen:BerGenBio AS: Consultancy, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Enzyme Inhibition and Medicinal Chemistry, Informa UK Limited, Vol. 30, No. 2 ( 2015-03-04), p. 180-188
    Type of Medium: Online Resource
    ISSN: 1475-6366 , 1475-6374
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2015
    detail.hit.zdb_id: 2082578-X
    detail.hit.zdb_id: 2049579-1
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Pharmacology, American Society for Pharmacology & Experimental Therapeutics (ASPET), Vol. 83, No. 5 ( 2013-05), p. 1057-1065
    Type of Medium: Online Resource
    ISSN: 0026-895X , 1521-0111
    Language: English
    Publisher: American Society for Pharmacology & Experimental Therapeutics (ASPET)
    Publication Date: 2013
    detail.hit.zdb_id: 124034-1
    detail.hit.zdb_id: 1475030-2
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...