GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Advances Vol. 6, No. 11 ( 2020-03-13)
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 6, No. 11 ( 2020-03-13)
    Abstract: The release of spin-down energy by a magnetar is a promising scenario to power several classes of extreme explosive transients. However, it lacks a firm basis because magnetar formation still represents a theoretical challenge. Using the first three-dimensional simulations of a convective dynamo based on a protoneutron star interior model, we demonstrate that the required dipolar magnetic field can be consistently generated for sufficiently fast rotation rates. The dynamo instability saturates in the magnetostrophic regime with the magnetic energy exceeding the kinetic energy by a factor of up to 10. Our results are compatible with the observational constraints on galactic magnetar field strength and provide strong theoretical support for millisecond protomagnetar models of gamma-ray burst and superluminous supernova central engines.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2019
    In:  Clinical Microbiology Reviews Vol. 32, No. 3 ( 2019-06-19)
    In: Clinical Microbiology Reviews, American Society for Microbiology, Vol. 32, No. 3 ( 2019-06-19)
    Abstract: Invasive fungal diseases carry high morbidity and mortality in patients undergoing chemotherapy for hematological malignancies or allogeneic hematopoietic stem cell transplantation. In order to prevent these life-threatening infections, antifungal chemoprophylaxis plays an important role in daily clinical practice. Broad-spectrum antifungal triazoles are widely used but exhibit disadvantages such as relevant drug-drug interactions. Therefore, amphotericin B products or echinocandins can be an alternative in selected patient populations. As these compounds are available as intravenous formulations only, there is growing interest in extended dosing regimens. Although not approved for these agents, this strategy is a rational option, as these compounds have properties suitable for this strategy, including dose-proportional pharmacokinetics, prolonged elimination half-life, and a large therapeutic window. As the use of extended dosing regimens in antifungal prophylaxis is expanding in clinical practice, we reviewed the pharmacokinetic and pharmacodynamic rationale for this strategy, animal model data, dose escalation studies, and clinical trials supporting this concept.
    Type of Medium: Online Resource
    ISSN: 0893-8512 , 1098-6618
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1497041-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 14, No. 12 ( 2021-12-07), p. 7477-7495
    Abstract: Abstract. We discuss two parallelization schemes for MagIC, an open-source, high-performance, pseudo-spectral code for the numerical solution of the magnetohydrodynamics equations in a rotating spherical shell. MagIC calculates the non-linear terms on a numerical grid in spherical coordinates, while the time step updates are performed on radial grid points with a spherical harmonic representation of the lateral directions. Several transforms are required to switch between the different representations. The established hybrid parallelization of MagIC uses message-passing interface (MPI) distribution in radius and relies on existing fast spherical transforms using OpenMP. Our new two-dimensional MPI decomposition implementation also distributes the latitudes or the azimuthal wavenumbers across the available MPI tasks and compute cores. We discuss several non-trivial algorithmic optimizations and the different data distribution layouts employed by our scheme. In particular, the two-dimensional distribution data layout yields a code that strongly scales well beyond the limit of the current one-dimensional distribution. We also show that the two-dimensional distribution implementation, although not yet fully optimized, can already be faster than the existing finely optimized hybrid parallelization when using many thousands of CPU cores. Our analysis indicates that the two-dimensional distribution variant can be further optimized to also surpass the performance of the one-dimensional distribution for a few thousand cores.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biomedicine & Pharmacotherapy, Elsevier BV, Vol. 118 ( 2019-10), p. 109318-
    Type of Medium: Online Resource
    ISSN: 0753-3322
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1501510-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Geophysical Journal International Vol. 222, No. 2 ( 2020-08-01), p. 1433-1448
    In: Geophysical Journal International, Oxford University Press (OUP), Vol. 222, No. 2 ( 2020-08-01), p. 1433-1448
    Abstract: The existence of a stably stratified layer underneath the core–mantle boundary (CMB) has been recently revived by corroborating evidences coming from seismic studies, mineral physics and thermal evolution models. Such a layer could find its physical origination either in compositional stratification due to the accumulation of light elements at the top or the core or in thermal stratification due to the heat flux becoming locally subadiabatic. The exact properties of this stably stratified layer, namely its size $\mathcal {H}_s$ and the degree of its stratification characterized by the Brunt–Väisälä frequency N, are however uncertain and highly debated. A stable layer underneath the CMB can have crucial dynamical impacts on the geodynamo. Because of the inhibition of the convective motions, a stable layer is expected to primarily act as a low-pass filter on the magnetic field, smoothing out the rapidly varying and small-scale features by skin effect. To investigate this effect more systematically, we compute 70 global geodynamo models varying the size of the stably stratified layer from 0 to 300 km and its amplitude from N/Ω = 0 to N/Ω ≃ 50, Ω being the rotation rate. We show that the penetration of the convective flow in the stably stratified layer is controlled by the typical size of the convective eddies and by the local variations of the ratio N/Ω. Using quantitative measures of the degree of morphological semblance between the magnetic field obtained in numerical models and the geomagnetic field at the CMB, we establish an upper bound for the stable layer thickness $\mathcal {H}_s\lt (N/\Omega )^{-1} \mathcal {L}_s$, $\mathcal {L}_s$ being the horizontal size of the convective flow at the base of the stable layer. This defines a strong geomagnetic constraint on the properties of a stably stratified layer beneath the CMB. Unless unaccounted double-diffusive effects could drastically modify the dynamics of the stable layer, our numerical geodynamo models hence favour no stable stratification atop the core.
    Type of Medium: Online Resource
    ISSN: 0956-540X , 1365-246X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 3042-9
    detail.hit.zdb_id: 2006420-2
    detail.hit.zdb_id: 1002799-3
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2016
    In:  Journal of Fluid Mechanics Vol. 808 ( 2016-12-10), p. 690-732
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 808 ( 2016-12-10), p. 690-732
    Abstract: Rayleigh–Bénard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\times 10^{-7}\leqslant E\leqslant 10^{-1}$ , Rayleigh numbers within the range $10^{3} 〈 Ra 〈 2\times 10^{10}$ and a Prandtl number of unity. The radius ratio $r_{i}/r_{o}$ is 0.6 in all cases and gravity is assumed to be proportional to $1/r^{2}$ . We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a small subset of our numerical data approach the asymptotic diffusivity-free scaling of rotating convection $Nu\sim Ra^{3/2}E^{2}$ in a narrow fraction of the parameter space delimited by $6\,Ra_{c}\leqslant Ra\leqslant 0.4\,E^{-8/5}$ . Using a decomposition of the viscous dissipation rate into bulk and boundary layer contributions, we establish a theoretical scaling of the flow velocity that accurately describes the numerical data. In rapidly rotating turbulent convection, the fluid bulk is controlled by a triple force balance between Coriolis, inertia and buoyancy, while the remaining fraction of the dissipation can be attributed to the viscous friction in the Ekman layers. Beyond $Ra\simeq E^{-8/5}$ , the rotational constraint on the convective flow is gradually lost and the flow properties continuously vary to match the regime changes between rotation-dominated and non-rotating convection. We show that the quantity $RaE^{12/7}$ provides an accurate transition parameter to separate rotating and non-rotating convection.
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2016
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2024
    In:  Icarus ( 2024-3), p. 116047-
    In: Icarus, Elsevier BV, ( 2024-3), p. 116047-
    Type of Medium: Online Resource
    ISSN: 0019-1035
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1467991-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Geochemistry, Geophysics, Geosystems, American Geophysical Union (AGU), Vol. 17, No. 5 ( 2016-05), p. 1586-1607
    Type of Medium: Online Resource
    ISSN: 1525-2027 , 1525-2027
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2016
    detail.hit.zdb_id: 2027201-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2023
    In:  Journal of Fluid Mechanics Vol. 954 ( 2023-01-10)
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 954 ( 2023-01-10)
    Abstract: Convection occurs ubiquitously on and in rotating geophysical and astrophysical bodies. Prior spherical shell studies have shown that the convection dynamics in polar regions can differ significantly from the lower latitude, equatorial dynamics. Yet most spherical shell convective scaling laws use globally-averaged quantities that erase latitudinal differences in the physics. Here we quantify those latitudinal differences by analysing spherical shell simulations in terms of their regionalized convective heat-transfer properties. This is done by measuring local Nusselt numbers in two specific, latitudinally separate, portions of the shell, the polar and the equatorial regions, $Nu_p$ and $Nu_e$ , respectively. In rotating spherical shells, convection first sets in outside the tangent cylinder such that equatorial heat transfer dominates at small and moderate supercriticalities. We show that the buoyancy forcing, parameterized by the Rayleigh number $Ra$ , must exceed the critical equatorial forcing by a factor of ${\approx }20$ to trigger polar convection within the tangent cylinder. Once triggered, $Nu_p$ increases with $Ra$ much faster than does $Nu_e$ . The equatorial and polar heat fluxes then tend to become comparable at sufficiently high $Ra$ . Comparisons between the polar convection data and Cartesian numerical simulations reveal quantitative agreement between the two geometries in terms of heat transfer and averaged bulk temperature gradient. This agreement indicates that rotating spherical shell convection dynamics is accessible both through spherical simulations and via reduced investigatory pathways, be they theoretical, numerical or experimental.
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2015
    In:  Journal of Fluid Mechanics Vol. 778 ( 2015-09-10), p. 721-764
    In: Journal of Fluid Mechanics, Cambridge University Press (CUP), Vol. 778 ( 2015-09-10), p. 721-764
    Abstract: We simulate numerically Boussinesq convection in non-rotating spherical shells for a fluid with a Prandtl number of unity and for Rayleigh numbers up to $10^{9}$ . In this geometry, curvature and radial variations of the gravitational acceleration yield asymmetric boundary layers. A systematic parameter study for various radius ratios (from ${\it\eta}=r_{i}/r_{o}=0.2$ to ${\it\eta}=0.95$ ) and gravity profiles allows us to explore the dependence of the asymmetry on these parameters. We find that the average plume spacing is comparable between the spherical inner and outer bounding surfaces. An estimate of the average plume separation allows us to accurately predict the boundary layer asymmetry for the various spherical shell configurations explored here. The mean temperature and horizontal velocity profiles are in good agreement with classical Prandtl–Blasius laminar boundary layer profiles, provided the boundary layers are analysed in a dynamical frame that fluctuates with the local and instantaneous boundary layer thicknesses. The scaling properties of the Nusselt and Reynolds numbers are investigated by separating the bulk and boundary layer contributions to the thermal and viscous dissipation rates using numerical models with ${\it\eta}=0.6$ and with gravity proportional to $1/r^{2}$ . We show that our spherical models are consistent with the predictions of Grossmann & Lohse’s ( J. Fluid Mech. , vol. 407, 2000, pp. 27–56) theory and that $\mathit{Nu}(\mathit{Ra})$ and $\mathit{Re}(\mathit{Ra})$ scalings are in good agreement with plane layer results.
    Type of Medium: Online Resource
    ISSN: 0022-1120 , 1469-7645
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1472346-3
    detail.hit.zdb_id: 218334-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...