GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: British Journal of Surgery, Oxford University Press (OUP), Vol. 106, No. 2 ( 2019-01-08), p. e73-e80
    Abstract: The Clavien–Dindo classification is perhaps the most widely used approach for reporting postoperative complications in clinical trials. This system classifies complication severity by the treatment provided. However, it is unclear whether the Clavien–Dindo system can be used internationally in studies across differing healthcare systems in high- (HICs) and low- and middle-income countries (LMICs). Methods This was a secondary analysis of the International Surgical Outcomes Study (ISOS), a prospective observational cohort study of elective surgery in adults. Data collection occurred over a 7-day period. Severity of complications was graded using Clavien–Dindo and the simpler ISOS grading (mild, moderate or severe, based on guided investigator judgement). Severity grading was compared using the intraclass correlation coefficient (ICC). Data are presented as frequencies and ICC values (with 95 per cent c.i.). The analysis was stratified by income status of the country, comparing HICs with LMICs. Results A total of 44 814 patients were recruited from 474 hospitals in 27 countries (19 HICs and 8 LMICs). Some 7508 patients (16·8 per cent) experienced at least one postoperative complication, equivalent to 11 664 complications in total. Using the ISOS classification, 5504 of 11 664 complications (47·2 per cent) were graded as mild, 4244 (36·4 per cent) as moderate and 1916 (16·4 per cent) as severe. Using Clavien–Dindo, 6781 of 11 664 complications (58·1 per cent) were graded as I or II, 1740 (14·9 per cent) as III, 2408 (20·6 per cent) as IV and 735 (6·3 per cent) as V. Agreement between classification systems was poor overall (ICC 0·41, 95 per cent c.i. 0·20 to 0·55), and in LMICs (ICC 0·23, 0·05 to 0·38) and HICs (ICC 0·46, 0·25 to 0·59). Conclusion Caution is recommended when using a treatment approach to grade complications in global surgery studies, as this may introduce bias unintentionally.
    Type of Medium: Online Resource
    ISSN: 0007-1323 , 1365-2168
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2006309-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: British Journal of Anaesthesia, Elsevier BV, Vol. 120, No. 1 ( 2018-01), p. 146-155
    Type of Medium: Online Resource
    ISSN: 0007-0912
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2011968-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Sports Engineering, Springer Science and Business Media LLC, Vol. 9, No. 3 ( 2006-9), p. 175-190
    Type of Medium: Online Resource
    ISSN: 1369-7072 , 1460-2687
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 2020956-3
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Pathogens, MDPI AG, Vol. 9, No. 8 ( 2020-08-13), p. 652-
    Abstract: The main reservoir of Coxiella (C.) burnetii are ruminants. They shed the pathogen through birth products, vaginal mucus, faeces and milk. A direct comparison of C. burnetii excretions between naturally infected sheep and goats was performed on the same farm to investigate species-specific differences. The animals were vaccinated with an inactivated C. burnetii phase I vaccine at the beginning of the study period for public health reasons. Vaginal and rectal swabs along with milk specimens were taken monthly during the lambing period and once again at the next lambing season. To estimate the environmental contamination of the animals’ housings, nasal swabs from every animal were taken simultaneously. Moreover, dust samples from the windowsills and straw beddings were collected. All samples were examined by qPCR targeting the IS1111 gene and the MLVA/VNTR typing method was performed. Whole genome sequencing was applied to determine the number of IS1111 copies followed by a calculation of C. burnetii genome equivalents of each sample. The cattle-associated genotype C7 was detected containing 29 IS1111 copies. Overall, goats seem to shed more C. burnetii through vaginal mucus and in particular shed more and for longer via the rectal route than sheep. This is supported by the larger quantities of C. burnetii DNA detected in caprine nasal swabs and environmental samples compared to the ovine ones. Transmission of C. burnetii from cattle to small ruminants must also be considered.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Medical Microbiology, Elsevier BV, Vol. 304, No. 7 ( 2014-10), p. 868-876
    Type of Medium: Online Resource
    ISSN: 1438-4221
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 2020515-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Sports Engineering, Springer Science and Business Media LLC, Vol. 9, No. 4 ( 2006-12), p. 229-249
    Type of Medium: Online Resource
    ISSN: 1369-7072 , 1460-2687
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 2020956-3
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2024
    In:  Veterinary Research Communications
    In: Veterinary Research Communications, Springer Science and Business Media LLC
    Abstract: The zoonotic bacterium Coxiella (C.) burnetii can be excreted by infected goats through birth products and milk. The detection of C. burnetii DNA in the mammary gland tissue of infected dairy goats and intermittent milk shedders has been reported, but confirmation of C. burnetii bacteria in the udder remained pending. The pathogen caused abortions in a 152-head dairy goat herd, resulting in the vaccination against C. burnetii of the entire herd with annual boosters. To monitor the C. burnetii shedding at herd level, monthly bulk tank milk (BTM) samples were analyzed using PCR (IS 1111 ). Despite vaccination, C. burnetii DNA was detected in BTM samples within the first 16 months of the study. Therefore, individual milk samples were tested on four different occasions several months apart to identify potential intermittent milk shedders. Only one goat (#67455) tested positive three times. This goat was necropsied to investigate the presence of C. burnetii in the udder and other organs. PCR detected C. burnetii DNA solely in both mammary glands and the left teat cistern. Immunohistological examination identified C. burnetii antigen in mammary gland tissue, confirmed by the detection of C. burnetii bacteria in the mammary epithelial cells using fluorescence in situ hybridization. The removal of goat #67455 led to negative BTM samples until the end of the study. The findings demonstrate the occurrence of C. burnetii in the mammary gland of a naturally infected and vaccinated goat. The presence possibly contributed to intermittent milk shedding of goat #67455, and the mammary gland tissue may serve as a replicative niche for C. burnetii .
    Type of Medium: Online Resource
    ISSN: 0165-7380 , 1573-7446
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 2011124-1
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Veterinary Science Vol. 9 ( 2022-12-19)
    In: Frontiers in Veterinary Science, Frontiers Media SA, Vol. 9 ( 2022-12-19)
    Abstract: Sheep are considered to be one of the main reservoirs for Coxiella burnetii , a gram-negative bacterium with high zoonotic potential. Infected sheep shed tremendous amounts of the pathogen through birth products which caused human Q fever epidemics in several countries. Information about the impact of an inactivated C. burnetii Phase I vaccine on humoral immune response, vaginal shedding, and lamb mortality in naturally pre-infected sheep is scarce. Methods Two identically managed and naturally C. burnetii -infected sheep flocks were examined for two lambing seasons (2019 and 2020). One flock (VAC) received a primary vaccination against Q fever before mating and the second flock served as control (CTR). In each flock, one cohort of 100 ewes was included in follow-up investigations. Serum samples at eight different sampling dates were analyzed by C. burnetii phase-specific ELISAs to differentiate between the IgG Phase I and II responses. Vaginal swabs were collected within three days after parturition and examined by a C. burnetii real-time PCR (IS 1111 ). Lamb losses were recorded to calculate lamb mortality parameters. Results After primary vaccination, almost all animals from cohort VAC showed a high IgG Phase I response up until the end of the study period. In cohort CTR, the seropositivity rate varied from 35.1% to 66.3%, and the Phase I and Phase II pattern showed an undulating trend with higher IgG Phase II activity during both lambing seasons. The number of vaginal shedders was significantly reduced in cohort VAC compared to cohort CTR during the lambing season in 2019 ( p & lt; 0.0167). There was no significant difference of vaginal shedders in 2020. The total lamb losses were low in both cohorts during the two investigated lambing seasons (VAC 2019: 6.8%, 2020: 3.2%; CTR 2019: 1.4%, 2020: 2.7%). Discussion Neither the C. burnetii vaccine nor the C. burnetii infection seem to have an impact on lamb mortality. Taken together, the inactivated C. burnetii Phase I vaccine induced a strong IgG Phase I antibody response in naturally pre-infected sheep. It might also reduce vaginal shedding in the short term but seems to have little beneficial impact on lamb mortality.
    Type of Medium: Online Resource
    ISSN: 2297-1769
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2834243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Acta Veterinaria Scandinavica, Springer Science and Business Media LLC, Vol. 65, No. 1 ( 2023-02-15)
    Abstract: The intracellular bacteria Anaplasma spp. and Coxiella burnetii and the tick-borne encephalitis virus (TBEV) are tick-transmitted pathogens circulating in the southern German sheep population. Knowledge of interaction among Anaplasma spp., C. burnetii and TBEV in sheep is lacking, but together they might promote and reinforce disease progression. The current study aimed to identify co-exposure of sheep to Anaplasma spp., C. burnetii and TBEV. For this purpose, 1,406 serum samples from 36 sheep flocks located in both southern German federal states, Baden-Wuerttemberg and Bavaria, were analysed by ELISAs to determine the antibody levels of the three pathogens. Inconclusive and positive results from the TBEV ELISA were additionally confirmed by a serum neutralisation assay. The proportion of sheep with antibodies against Anaplasma spp. (47.2%), C. burnetii (3.7%) and TBEV (4.7%) differed significantly. Significantly more flocks with Anaplasma spp. seropositive sheep (91.7%) were detected than flocks with antibodies against TBEV (58.3%) and C. burnetii (41.7%), but there was no significant difference between the number of flocks which contained TBEV and C. burnetii seropositive sheep. Seropositivity against at least two pathogens was detected in 4.7% of sheep from 20 flocks. Most co-exposed sheep had antibodies against Anaplasma spp./TBEV (n = 36), followed by Anaplasma spp./ C. burnetii (n = 27) and Anaplasma spp./ C. burnetii /TBEV (n = 2). Only one sheep showed an immune response against C. burnetii and TBEV. Flocks with sheep being positive against more than one pathogen were widely distributed throughout southern Germany. The descriptive analysis revealed no association between the antibody response of the three pathogens at animal level. Taking the flocks as a cluster variable into account, the exposure to TBEV reduced the probability of identifying C. burnetii antibodies in sheep significantly (odds ratio 0.46; 95% confidence interval 0.24–0.85), but the reason for this is unknown. The presence of Anaplasma spp. antibodies did not influence the detection of antibodies against C. burnetii and TBEV. Studies under controlled conditions are necessary to evaluate any possible adverse impact of co-exposure to tick-borne pathogens on sheep health. This can help to clarify rare disease patterns. Research in this field may also support the One Health approach due to the zoonotic potential of Anaplasma spp., C. burnetii and TBEV.
    Type of Medium: Online Resource
    ISSN: 1751-0147
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2240171-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...