GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Infectious Agents and Cancer, Springer Science and Business Media LLC, Vol. 16, No. 1 ( 2021-12)
    Abstract: Frequent mutations in the nuclear receptor binding SET domain protein 1 ( NSD1 ) gene have been observed in head and neck squamous cell carcinomas (HNSCC). NSD1 encodes a histone 3 lysine-36 methyltransferase. NSD1 mutations are correlated with improved clinical outcomes and increased sensitivity to platinum-based chemotherapy agents in human papillomavirus-negative (HPV-) tumors, despite weak T-cell infiltration. However, the role of NSD1 and related family members NSD2 and NSD3 in human papillomavirus-positive (HPV+) HNSCC is unclear. Methods Using data from over 500 HNSCC patients from The Cancer Genome Atlas (TCGA), we compared the relative level of mRNA expression of NSD1 , NSD2 , and NSD3 in HPV+ and HPV- HNSCC. Correlation analyses were performed between T-cell infiltration and the relative level of expression of NSD1 , NSD2 , and NSD3 mRNA in HPV+ and HPV- HNSCC. In addition, overall survival outcomes were compared for both the HPV+ and HPV- subsets of patients based on stratification by NSD1 , NSD2 , and NSD3 expression levels. Results Expression levels of NSD1 , NSD2 or NSD3 were not correlated with altered lymphocyte infiltration in HPV+ HNSCC. More importantly, low expression of NSD1 , NSD2 , or NSD3 correlated with significantly reduced overall patient survival in HPV+, but not HPV- HNSCC. Conclusion These results starkly illustrate the contrast in molecular features between HPV+ and HPV- HNSCC tumors and suggest that NSD1 , NSD2 , and NSD3 expression levels should be further investigated as novel clinical metrics for improved prognostication and patient stratification in HPV+ HNSCC.
    Type of Medium: Online Resource
    ISSN: 1750-9378
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2251117-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 12, No. 1 ( 2020-01-20), p. 253-
    Abstract: Human papillomavirus (HPV) causes an increasing number of head and neck squamous cell carcinomas (HNSCCs). Altered metabolism contributes to patient prognosis, but the impact of HPV status on HNSCC metabolism remains relatively uncharacterized. We hypothesize that metabolism-related gene expression differences unique to HPV-positive HNSCC influences patient survival. The Cancer Genome Atlas RNA-seq data from primary HNSCC patient samples were categorized as 73 HPV-positive, 442 HPV-negative, and 43 normal-adjacent control tissues. We analyzed 229 metabolic genes and identified numerous differentially expressed genes between HPV-positive and negative HNSCC patients. HPV-positive carcinomas exhibited lower expression levels of genes involved in glycolysis and higher levels of genes involved in the tricarboxylic acid cycle, oxidative phosphorylation, and β-oxidation than the HPV-negative carcinomas. Importantly, reduced expression of the metabolism-related genes SDHC, COX7A1, COX16, COX17, ELOVL6, GOT2, and SLC16A2 were correlated with improved patient survival only in the HPV-positive group. This work suggests that specific transcriptional alterations in metabolic genes may serve as predictive biomarkers of patient outcome and identifies potential targets for novel therapeutic intervention in HPV-positive head and neck cancers.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: mSphere, American Society for Microbiology, Vol. 7, No. 4 ( 2022-08-31)
    Abstract: Human papillomaviruses (HPVs) are highly infectious and cause the most common sexually transmitted viral infections. They induce hyperproliferation of squamous epithelial tissue, often forming warts. Virally encoded proteins reprogram gene expression and cell growth to create an optimal environment for viral replication. In addition to their normal roles in infection, functional alterations induced by viral proteins establish conditions that frequently contribute to human carcinogenesis. In fact, ~5% of human cancers are caused by HPVs, with virtually all cervical squamous cell carcinomas (CESC) and an increasing number of head and neck squamous cell carcinomas (HNSC) attributed to HPV infection. The Cancer Genome Atlas (TCGA) molecularly characterized thousands of primary human cancer samples in many cancer types, including CESC and HNSC, and created a comprehensive atlas of genomic, epigenomic, and transcriptomic data. This publicly available genome-wide information provides an unprecedented opportunity to expand the knowledge of the role that HPV plays in human carcinogenesis. While many tools exist to mine these data, few, if any, focus on the comparison of HPV-positive cancers with their HPV-negative counterparts or adjacent normal control tissue. We have constructed a suite of web-based tools, The HPV Induced Cancer Resource (THInCR), to utilize TCGA data for research related to HPV-induced CESC and HNSC. These tools allow investigators to gain greater biological and medical insights by exploring the impacts of HPV on cellular gene expression (mRNA and microRNA), altered gene methylation, and associations with patient survival and immune landscape features. These tools are accessible at https://thincr.ca/ . IMPORTANCE The suite of analytical tools of THInCR provides the opportunity to investigate the roles that candidate target genes identified in cell lines or other model systems contribute to in actual HPV-dependent human cancers and is based on large-scale TCGA data sets. Expression of target genes, including both mRNA and microRNA, can be correlated with HPV gene expression, epigenetic changes in DNA methylation, patient survival, and numerous immune features, like leukocyte infiltration, interferon gamma response, T cell response, etc. Data from these analyses may immediately provide evidence to validate in vitro observations, reveal insights into mechanisms of virus-mediated alterations in cell growth, behavior, gene expression, and innate and adaptive immunity and may help hypothesis generation for further investigations.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 39 ( 2019-09-24), p. 19552-19562
    Abstract: High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell’s DNA replication and repair machineries to replicate their own genomes. How this host–pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Oral Oncology, Elsevier BV, Vol. 104 ( 2020-05), p. 104614-
    Type of Medium: Online Resource
    ISSN: 1368-8375
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2011971-9
    detail.hit.zdb_id: 2202218-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Journal of Clinical Medicine Vol. 12, No. 17 ( 2023-08-31), p. 5668-
    In: Journal of Clinical Medicine, MDPI AG, Vol. 12, No. 17 ( 2023-08-31), p. 5668-
    Abstract: Most infections with human papillomaviruses (HPVs) are self-resolving and asymptomatic. However, some infections can lead to the development of cancer at different mucosal sites, such as the cervix and the head and neck. Head and neck cancers (HNCs) are dichotomized into HPV-positive (HPV+) or HPV-negative (HPV−) based on their respective etiologies. Notably, the tumor microenvironment (TME) of the HPV+ subtype has an immune landscape characterized with increased immune infiltration, higher levels of T cell activation, and higher levels of immunoregulatory stimuli compared to their HPV− counterparts. Both enveloped and nonenveloped viruses hijack the extracellular vesicle (EV) biogenesis pathway to deploy a “trojan horse” strategy with a pseudoviral envelope to enhance infectivity and evade inflammation. EVs derived from HPV-infected tumor cells could allow for the stealth transport of viral cargo to neighboring nonmalignant cellular populations or infiltrating immune cells within the TME. Furthermore, viral cargo or altered cellular cargo from HPV-associated tumor EVs (HPV-TEVs) could alter the functional state or biological responses of the recipient cellular populations, which could shape the distinctive HPV+ TME. This review will cover the impact of EVs released from HPV-infected cells on HPV-induced carcinogenesis, their role in shaping the distinctive HPV+ tumor microenvironment, and current efforts to develop a painless EV-based liquid biopsy for HPV+ cancers.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cell, Elsevier BV, Vol. 185, No. 5 ( 2022-03), p. 896-915.e19
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: mBio, American Society for Microbiology, Vol. 9, No. 3 ( 2018-07-05)
    Abstract: As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  WIREs Mechanisms of Disease Vol. 14, No. 2 ( 2022-03)
    In: WIREs Mechanisms of Disease, Wiley, Vol. 14, No. 2 ( 2022-03)
    Abstract: Human papillomaviruses (HPVs) are the etiological agent of a significant, and increasing, fraction of head and neck squamous cell carcinomas (HNSCC)—a heterogenous group of malignancies in the head and neck region. HPV infection accounts for approximately 25% of all cases, with the remainder typically caused by smoking and excessive alcohol consumption. These distinct etiologies lead to profound clinical and immunological differences between HPV‐positive (HPV + ) and HPV‐negative (HPV − ) HNSCC, likely related to the expression of exogenous viral antigens in the HPV + subtype. Specifically, HPV + HNSCC patients generally exhibit better treatment response compared to those with HPV − disease, leading to a more favorable prognosis, with lower recurrence rate, and longer overall survival time. Importantly, a plethora of studies have illustrated that the tumor immune microenvironment (TIME) of HPV + HNSCC has a strikingly distinct immune composition to that of its HPV − counterpart. The HPV + TIME is characterized as being immunologically “hot,” with more immune infiltration, higher levels of T‐cell activation, and higher levels of immunoregulation compared to the more immunologically “cold” HPV − TIME. In general, cancers with an immune “hot” TIME exhibit better treatment response and superior clinical outcomes in comparison to their immune “cold” counterparts. Indeed, this phenomenon has also been observed in HPV + HNSCC patients, highlighting the critical role of the TIME in influencing prognosis, and further validating the use of cancer therapies that capitalize on the mobilization and/or modulation of the TIME. This article is categorized under: Cancer 〉 Molecular and Cellular Physiology Infectious Diseases 〉 Molecular and Cellular Physiology
    Type of Medium: Online Resource
    ISSN: 2692-9368 , 2692-9368
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 3119452-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Virology, American Society for Microbiology, Vol. 92, No. 8 ( 2018-04-15)
    Abstract: The E1A proteins of the various human adenovirus (HAdV) species perform the critical task of converting an infected cell into a setting primed for virus replication. While E1A proteins differ in both sequence and mechanism, the evolutionary pressure on viruses with limited coding capacity ensures that these proteins often have significant overlap in critical functions. HAdV-5 E1A is known to use mimicry to rewire cyclic AMP (cAMP) signaling by decoupling protein kinase A (PKA) from cellular A kinase-anchoring proteins (AKAPs) and utilizing PKA to its own advantage. We show here that E1As from other species of HAdV also possess this viral AKAP (vAKAP) function and examine how they manipulate PKA. E1A from most species of HAdV examined contain a small AKAP-like motif in their N terminus which targets the docking-dimerization domain of PKA as the binding interface for a conserved protein-protein interaction. This motif is also responsible for an E1A-mediated relocalization of PKA regulatory subunits from the cytoplasm into the nucleus, with species-specific E1A proteins having preference for one particular isoform of PKA subunit over another. Importantly, we showed that these newly characterized vAKAPs can integrate into cAMP-responsive transcription as well as contribute to viral genome replication and infectious progeny production for several distinct HAdV species. IMPORTANCE These data enhance the mechanistic knowledge on how HAdV E1A manipulates cellular PKA to benefit infection. The work establishes that mimicry of AKAPs and subversion of PKA-mediated cAMP signaling are conserved features for numerous human adenoviruses. This study also highlights the molecular determinants conferring selective protein-protein interactions between distinct PKA regulatory subunits and the different E1A proteins of these viruses. Additionally, it further emphasizes the utility of using viral proteins like E1A as tools for studying the molecular biology of cellular regulatory pathways.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...