GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 32, No. 8 ( 2022-04-05), p. 1593-1607
    Abstract: Temporal correlation analysis of spontaneous brain activity (e.g., Pearson “functional connectivity,” FC) has provided insights into the functional organization of the human brain. However, bivariate analysis techniques such as this are often susceptible to confounding physiological processes (e.g., sleep, Mayer-waves, breathing, motion), which makes it difficult to accurately map connectivity in health and disease as these physiological processes affect FC. In contrast, a multivariate approach to imputing individual neural networks from spontaneous neuroimaging data could be influential to our conceptual understanding of FC and provide performance advantages. Therefore, we analyzed neural calcium imaging data from Thy1-GCaMP6f mice while either awake, asleep, anesthetized, during low and high bouts of motion, or before and after photothrombotic stroke. A linear support vector regression approach was used to determine the optimal weights for integrating the signals from the remaining pixels to accurately predict neural activity in a region of interest (ROI). The resultant weight maps for each ROI were interpreted as multivariate functional connectivity (MFC), resembled anatomical connectivity, and demonstrated a sparser set of strong focused positive connections than traditional FC. While global variations in data have large effects on standard correlation FC analysis, the MFC mapping methods were mostly impervious. Lastly, MFC analysis provided a more powerful connectivity deficit detection following stroke compared to traditional FC.
    Type of Medium: Online Resource
    ISSN: 1047-3211 , 1460-2199
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 33, No. 12 ( 2023-06-08), p. 7436-7453
    Abstract: As a regressive neurodevelopmental disorder with a well-established genetic cause, Rett syndrome and its Mecp2 loss-of-function mouse model provide an excellent opportunity to define potentially translatable functional signatures of disease progression, as well as offer insight into the role of Mecp2 in functional circuit development. Thus, we applied widefield optical fluorescence imaging to assess mesoscale calcium functional connectivity (FC) in the Mecp2 cortex both at postnatal day (P)35 in development and during the disease-related decline. We found that FC between numerous cortical regions was disrupted in Mecp2 mutant males both in juvenile development and early adulthood. Female Mecp2 mice displayed an increase in homotopic contralateral FC in the motor cortex at P35 but not in adulthood, where instead more posterior parietal regions were implicated. An increase in the amplitude of connection strength, both with more positive correlations and more negative anticorrelations, was observed across the male cortex in numerous functional regions. Widespread rescue of MeCP2 protein in GABAergic neurons rescued none of these functional deficits, nor, surprisingly, the expected male lifespan. Altogether, the female results identify early signs of disease progression, while the results in males indicate MeCP2 protein is required for typical FC in the brain.
    Type of Medium: Online Resource
    ISSN: 1047-3211 , 1460-2199
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...