GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 963-963
    Abstract: Abstract 963 Blast crisis (BC) chronic myeloid leukemia (CML) is characterized by expansion of a granulocyte macrophage progenitor-like population (GMPs) that has acquired self-renewal capacity, a feature not seen in normal or chronic phase (CP) GMPs. The ability to self-renew is thought to be mediated by b-catenin activation, and may contribute to disease persistence, as well as act as a reservoir for resistance. The mechanisms contributing to b-catenin activation remain obscure, and will need to be identified to improve the control of BC. In this study, we investigated the role of the mRNA translation machinery in mediating b-catenin-mediated self-renewal, since our prior work had implicated aberrant mRNA translation in drug-resistance and BC pathophysiology (Ly et al. Cancer Research 2003; Prabhu et al. Oncogene, 2007; Zhang et al. MCB, 2008). Using immunofluorescence (IF), we first confirmed that BC GMPs have activated nuclear b-catenin compared to GMPs isolated from normal cord blood, and that this was associated with increased eIF4E expression and phosphorylation at Ser209. Next, using biochemical and genetic approaches in CML cell lines (K562 and KCL22), we demonstrated that eIF4E overexpression was sufficient to increase b-catenin activity (as measured by IF for nuclear b-catenin, b-catenin reporter assays, and expression of b-catenin-regulated genes). By expressing phospho-mutant forms of eIF4E (S209A, S209D), we also found that the increase in b-catenin transcriptional activity is dependent on phosphorylation of at Ser209. In line with these observations, siRNA-mediated knockdown or pharmacologic (CGP57380) inhibition of the MNK1/2 kinases (which mediate in vivo eIF4E phosphorylation) prevented the increased b-catenin activity induced by eIF4E overexpression. Mechanistically, we found that eIF4E activated b-catenin signaling via a two-step mechanism. First, eIF4E overexpression increased total cell b-catenin. Second, eIF4E phosphorylation facilitated b-catenin nuclear translocation. The latter step was associated with increased b-catenin phosphorylation at Ser552, a site known to be involved in nuclear translocation, and directly regulated by AKT. Consistent with this model, siRNA-mediated knockdown or small molecule inhibition of AKT (AKT Inhibitor IV) prevented eIF4E-mediated increases in b-catenin transcriptional activity. The importance of eIF4E phosphorylation on b-catenin activation and the self-renewal capacity of primary BC GMPs cells was assessed next. First, we showed that treatment with CGP57380, but not imatinib or dasatinib, inhibited eIF4E phosphorylation, as well as prevented accumulation of active nuclear b-catenin in BC GMPs. Next, we evaluated the effect of MNK1/2 inhibition on the stem cell function of BC cells using both in vitro and in vivo assays. In an in vitro serial replating assay, we showed that CGP57380 impaired the ability of CD34+ BC cells (including those carrying T315I mutation), but not normal CD34+ cells, to serially replate for more than 8 weeks in methylcellulose. Interestingly, treatment with either imatinib or dasatinib only partially impaired the ability of BC CML to serially replate. Next, we found that in vitro treatment of BC CD34+ CML cells, but not normal cord blood CD34+ cells, with CGP57380 retarded their ability to engraft NSG mice. Finally, we developed an in vivo serial transplantation assay for assessing the leukemia stem cell (LSC) function of patient-derived BC GMPs. Here, we injected either BC GMPs or BC CD34+ CML cells intrafemorally into 8- to 10-week old sublethally irradiated NSG mice. Following engraftment, mice were treated with vehicle, CGP53780 (40 mg/kg/d), or dasatinib (5mg/kg/d) for three consecutive weeks. Following treatment, human CD34+ cells were isolated from the mice, and transplanted into a second recipient mouse. At 16 weeks, we found that in vivo treatment with CGP57380, but not dasatinib, prevented BC cells from serially transplanting NSG mice. In summary, our results demonstrate that: 1. eIF4E is overexpressed and phosphorylated at Ser209 in BC, but not normal, GMPs; 2. eIF4E phosphorylation activates b-catenin signalling in BC GMPs; 3. MNK inhibition prevents eIF4E phosphorylation and b-catenin signalling in BC GMPs; and 4. MNK inhibition prevents BC GMPs from functioning as LSCs. Our studies suggest that pharmacologic inhibition of the MNK1/2 kinases may be therapeutically useful in BC CML. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 25 ( 2013-06-18)
    Abstract: Chronic myeloid leukemia responds well to therapy targeting the oncogenic fusion protein BCR-ABL1 in chronic phase, but is resistant to treatment after it progresses to blast crisis (BC). BC is characterized by elevated β-catenin signaling in granulocyte macrophage progenitors (GMPs), which enables this population to function as leukemia stem cells (LSCs) and act as a reservoir for resistance. Because normal hematopoietic stem cells (HSCs) and LSCs depend on β-catenin signaling for self-renewal, strategies to specifically target BC will require identification of drugable factors capable of distinguishing between self-renewal in BC LSCs and normal HSCs. Here, we show that the MAP kinase interacting serine/threonine kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis is overexpressed in BC GMPs but not normal HSCs, and that MNK kinase-dependent eIF4E phosphorylation at serine 209 activates β-catenin signaling in BC GMPs. Mechanistically, eIF4E overexpression and phosphorylation leads to increased β-catenin protein synthesis, whereas MNK-dependent eIF4E phosphorylation is required for nuclear translocation and activation of β-catenin. Accordingly, we found that a panel of small molecule MNK kinase inhibitors prevented eIF4E phosphorylation, β-catenin activation, and BC LSC function in vitro and in vivo. Our findings identify the MNK–eIF4E axis as a specific and critical regulator of BC self-renewal, and suggest that pharmacologic inhibition of the MNK kinases may be therapeutically useful in BC chronic myeloid leukemia.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2005
    In:  Journal of Leukocyte Biology Vol. 78, No. 6 ( 2005-10-04), p. 1378-1385
    In: Journal of Leukocyte Biology, Oxford University Press (OUP), Vol. 78, No. 6 ( 2005-10-04), p. 1378-1385
    Abstract: Interleukin-3 (IL-3) mediates hematopoietic cell survival and proliferation via several signaling pathways such as the Janus kinase/signal transducer and activator of transcription pathway, mitogen-activated protein kinase (MAPK) pathway, and phosphoinositide-3 kinase (PI-3K) pathway. Mammalian target of rapamycin (mTOR) is one of the downstream targets of the PI-3K pathway, and it plays an important role in hematopoiesis and immune cell function. To better elucidate how mTOR mediates proliferation signals from IL-3, we assessed the role of S6 kinase 2 (S6K2), one of the downstream targets of mTOR, in IL-3 signaling. We show that S6K2 is activated by IL-3 in the IL-3-dependent Ba/F3 cell line and that this is mediated by mTOR and its upstream activator PI-3K but not by the MAPK kinase/extracellular signal-regulated kinase pathway. S6K2 is also activated in primary mouse bone marrow-derived mast cells upon IL-3 stimulation. Expression of a rapamycin-resistant form of S6K2, T388E, in Ba/F3 cells provides a proliferation advantage in the absence or presence of rapamycin, indicating that S6K2 can potentiate IL-3-mediated mitogenic signals. In cells expressing T388E, rapamycin still reduces proliferation at all doses of rapamycin, showing that mTOR targets other than S6K2 play an important role in IL-3-dependent proliferation. Cell-cycle analysis shows that T388E-expressing Ba/F3 cells enter S phase earlier than the control cells, indicating that the proliferation advantage may be mediated by a shortened G1 phase. This is the first indication that S6K2 plays a role in IL-3-dependent cell proliferation.
    Type of Medium: Online Resource
    ISSN: 0741-5400 , 1938-3673
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2005
    detail.hit.zdb_id: 2026833-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 11 ( 2021-8-2)
    Abstract: The mechanistic target of rapamycin (mTOR) is a kinase whose activity is elevated in hematological malignancies. mTOR-complex-1 (mTORC1) phosphorylates numerous substrates to promote cell proliferation and survival. Eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) are mTORC1 substrates with an integral role in oncogenic protein translation. Current pharmacological approaches to inhibit mTORC1 activity and 4E-BP phosphorylation have drawbacks. Recently we described a series of bi-steric compounds that are potent and selective inhibitors of mTORC1, inhibiting 4E-BP phosphorylation at lower concentrations than mTOR kinase inhibitors (TOR-KIs). Here we report the activity of the mTORC1-selective bi-steric inhibitor, RMC-4627, in BCR-ABL-driven models of B-cell acute lymphoblastic leukemia (B-ALL). RMC-4627 exhibited potent and selective inhibition of 4E-BP1 phosphorylation in B-ALL cell lines without inhibiting mTOR-complex-2 (mTORC2) activity. RMC-4627 suppressed cell cycle progression, reduced survival, and enhanced dasatinib cytotoxicity. Compared to a TOR-KI compound, RMC-4627 was more potent, and its effects on cell viability were sustained after washout in vitro . Notably, a once-weekly, well tolerated dose reduced leukemic burden in a B-ALL xenograft model and enhanced the activity of dasatinib. These preclinical studies suggest that intermittent dosing of a bi-steric mTORC1-selective inhibitor has therapeutic potential as a component of leukemia regimens, and further study is warranted.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 8 ( 2017-06-30)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2017
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2000
    In:  Journal of Biological Chemistry Vol. 275, No. 8 ( 2000-02), p. 6022-6029
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 275, No. 8 ( 2000-02), p. 6022-6029
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2000
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: PLOS Biology, Public Library of Science (PLoS), Vol. 19, No. 7 ( 2021-7-15), p. e3000956-
    Abstract: PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health (NIH) funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the NIH BEST awardee institutions included career panels, skill-building workshops, job search workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from 10 NIH BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce.
    Type of Medium: Online Resource
    ISSN: 1545-7885
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2021
    detail.hit.zdb_id: 2126773-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 129, No. 1 ( 2017-01-05), p. 88-99
    Abstract: A novel PI3Kδ inhibitor TGR-1202 synergizes with proteasome inhibitor carfilzomib by silencing c-Myc in preclinical models of lymphoma. The unique activity of TGR-1202 as a single agent and in combination with carfilzomib is driven by an unexpected activity targeting CK1ε.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Transplant Immunology, Elsevier BV, Vol. 2, No. 3 ( 1994-9), p. 218-224
    Type of Medium: Online Resource
    ISSN: 0966-3274
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1994
    detail.hit.zdb_id: 2027651-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3706-3706
    Abstract: Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a subtype of high-risk B-precursor ALL (B-ALL) that carries a high risk of relapse after conventional chemotherapy (Mullighan et al, N Engl J Med. 2009). Rearrangements in CRLF2, leading to overexpression of the receptor for the cytokine thymic stromal lymphopoietin (TSLP), are present in approximately 50% of Ph-like ALLs and are associated with hyperactive JAK/STAT and PI3K/mTOR signaling (Harvey et al, Blood 2010; Tasian et al, Blood 2014). Previous studies established that combining a tyrosine kinase inhibitor (TKI) with an mTOR inhibitor provides greater anti-leukemia efficacy than a TKI alone in Ph+ B-ALL (Janes et al, Nat. Med. 2013). While allosteric mTOR inhibitors such as rapamycin only partially block mTORC1 and do not directly inhibit mTORC2, second-generation ATP-competitive mTOR kinase inhibitors (TOR-KIs) efficiently block both mTOR outputs and show greater efficacy when combined with TKIs. In this study, we investigated anti-leukemia efficacy and intracellular signaling networks in Ph-like CRLF2+ ALL models treated with combinations of a type I or type II JAK-2 inhibitor and a TOR-KI. The inhibitors were tested in human B-precursor Ph-like ALL cell lines MUTZ5 (IGH@-CRLF2 translocation, JAK2 R683G mutation) and MHH-CALL-4 (IGH@-CRLF2 translocation, JAK2 I682F mutation), B-ALL cell line REH (CRLF2wt), and primary CRLF2+ xenograft cells in vitro. For signaling and growth inhibition studies, cells were stimulated with 25 ng IL-7 or TSLP for 30 min, then with JAK2 type I inhibitor ruxolitinib (500nM) or type II inhibitor NVP-BBT594 (500nM) (Andraos et al., Cancer Discov. 2012) and allosteric mTOR inhibitor rapamycin or TOR-KI AZD2014. Effects on intracellular signaling were determined by phospho-flow cytometry. Anti-leukemia effects were characterized by viable cell counts and annexin V flow cytometry. In vitro stimulation of CRLF2-rearranged cells with TSLP robustly induced JAK/STAT signaling (p-JAK2(Tyr1008), p-STAT5(Ty694)) and AKT/pS6 signaling (p-AKT(Ser473), p-rS6(S235/236) (Fig. 1A). Stimulation with IL-7, mimicking support by the normal bone marrow environment, induced a lesser degree of activation of these phospho-proteins, except for p-4EBP1(T37/46), which was constitutively highly expressed in these cells and further induced by IL-7. These findings warranted combination studies of JAK2 and mTOR inhibitors. JAK2 inhibition with ruxolitinib or BBT594 efficiently inhibited TLSP-induced STAT5, AKT, and S6 activation, yet failed to decrease p-4EBP1 (Fig. 1A). AZD2014 but not rapamycin fully inhibited p-4EBP1, consistent with efficient inhibition of TORC1, and caused profound cell cycle arrest and growth arrest in CRLF2+ cells (Fig. 1A, C). In turn, combination of ruxolitinib and AZD2014 further reduced cell proliferation but did not induce apoptotic cell death (Fig. 1B, D). Recent studies indicate persistence of JAK2-mutated cells in myeloproliferative neoplasms upon long-term exposure to a type I JAK2 inhibitor, mediated by JAK2 heterodimerization and reactivation of JAK-STAT signaling (Koppikar et al., Nature 2012). We therefore compared the in vitro efficacy of ruxolitinib and BBT594, a type II JAK2 inhibitor that retains the ability to bind inactive JAK2, in Ph-like ALL cells. In MUTZ-5 but not in MHH-CALL-4 cells, ruxolitinib increased JAK2 activation loop phosphorylation (p-JAK2-Tyr1008) despite suppression of STAT5 phosphorylation; in contrast, BBT594 diminished both p-JAK2 and p-STAT5. Unexpectedly, BBT594 induced apoptotic cell death in both MUTZ5, MHH-CALL-4 (Fig 1B) and in ALL blasts recovered from primary CRLF2+ xenograft and grown in OP9 in vitro co-culture; the combination of BBT594 with AZD2014 increased apoptosis and reduced cell viability even further, in both cell lines and in stroma-attached primary ALL cells. In summary, these results suggest that efficient blockade of JAK2/STAT5 with a type II JAK2 inhibitor translates into cell death of JAK2-addicted CRLF2-rearranged cells and may have the capacity to eliminate JAK2-mutated clones. Concomitant blockade of TORC1 signaling with a TOR-KI reduces B-ALL cell proliferation through potent inhibition of 4EBP1 and causes synthetic lethality, providing avenues for novel, rationally designed combinatorial regimens in this subset of Ph-like B-ALL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...