GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 9, No. 1 ( 2021-09-03)
    Abstract: The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), first described in Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as opportunistic fungal pathogens from the genus Aspergillus . To gain insight into COVID-19-associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit significant differences from the genome of the Af293 reference strain. By examining a number of factors, including virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, secondary metabolite biosynthesis, and the MIC of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss-of-function mutations in genes known to increase virulence when deleted. Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains Af293 and CEA17, but similarly virulent to two other clinical strains of A. fumigatus . These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA. IMPORTANCE The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has already killed millions of people. COVID-19 patient outcome can be further complicated by secondary infections, such as COVID-19-associated pulmonary aspergillosis (CAPA). CAPA is caused by Aspergillus fungal pathogens, but there is little information about the genomic and phenotypic characteristics of CAPA isolates. We conducted genome sequencing and extensive phenotyping of four CAPA isolates of Aspergillus fumigatus from Germany. We found that CAPA isolates were often, but not always, similar to other reference strains of A. fumigatus across 206 genetic determinants of infection-relevant phenotypes, including virulence. For example, CAPA isolate D was more virulent than other CAPA isolates and reference strains in an invertebrate model of fungal disease, but similarly virulent to two other clinical strains. These results expand our understanding of COVID-19-associated pulmonary aspergillosis.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Elementa: Science of the Anthropocene, University of California Press, Vol. 5 ( 2017-01-01)
    Abstract: The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m) ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m) worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units). O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction) to further impact deep-seafloor ecosystems and discuss the possible societal implications.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2017
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Royal Society ; 2016
    In:  Proceedings of the Royal Society B: Biological Sciences Vol. 283, No. 1829 ( 2016-04-27), p. 20160637-
    In: Proceedings of the Royal Society B: Biological Sciences, The Royal Society, Vol. 283, No. 1829 ( 2016-04-27), p. 20160637-
    Abstract: Sharp increases in atmospheric CO 2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. One strategy to interpret adaptation potential and predict future faunal change is to examine ecological shifts along natural gradients in the modern ocean. Here, we assess the explanatory power of temperature, oxygen and the carbonate system for macrofaunal diversity and evenness along continental upwelling margins using variance partitioning techniques. Oxygen levels have the strongest explanatory capacity for variation in species diversity. Sharp drops in diversity are seen as O 2 levels decline through the 0.5–0.15 ml l −1 (approx. 22–6 µM; approx. 21–5 matm) range, and as temperature increases through the 7–10°C range. p CO 2 is the best explanatory variable in the Arabian Sea, but explains little of the variance in diversity in the eastern Pacific Ocean. By contrast, very little variation in evenness is explained by these three global change variables. The identification of sharp thresholds in ecological response are used here to predict areas of the seafloor where diversity is most at risk to future marine global change, noting that the existence of clear regional differences cautions against applying global thresholds.
    Type of Medium: Online Resource
    ISSN: 0962-8452 , 1471-2954
    Language: English
    Publisher: The Royal Society
    Publication Date: 2016
    detail.hit.zdb_id: 1460975-7
    SSG: 12
    SSG: 25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Environmental Science & Technology, American Chemical Society (ACS), Vol. 48, No. 17 ( 2014-09-02), p. 9982-9994
    Type of Medium: Online Resource
    ISSN: 0013-936X , 1520-5851
    RVK:
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2014
    detail.hit.zdb_id: 280653-8
    detail.hit.zdb_id: 1465132-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 33 ( 2013-08-13), p. 13446-13451
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 33 ( 2013-08-13), p. 13446-13451
    Abstract: The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator–prey “arms races” can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Plants, Springer Science and Business Media LLC, Vol. 9, No. 4 ( 2023-03-14), p. 674-674
    Type of Medium: Online Resource
    ISSN: 2055-0278
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2815502-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Plants, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2022-12-23), p. 45-57
    Abstract: Net-zero greenhouse gas (GHG) emissions targets are driving interest in opportunities for biomass-based negative emissions and bioenergy, including from marine sources such as seaweed. Yet the biophysical and economic limits to farming seaweed at scales relevant to the global carbon budget have not been assessed in detail. We use coupled seaweed growth and technoeconomic models to estimate the costs of global seaweed production and related climate benefits, systematically testing the relative importance of model parameters. Under our most optimistic assumptions, sinking farmed seaweed to the deep sea to sequester a gigaton of CO 2 per year costs as little as US$480 per tCO 2 on average, while using farmed seaweed for products that avoid a gigaton of CO 2 -equivalent GHG emissions annually could return a profit of $50 per tCO 2 -eq. However, these costs depend on low farming costs, high seaweed yields, and assumptions that almost all carbon in seaweed is removed from the atmosphere (that is, competition between phytoplankton and seaweed is negligible) and that seaweed products can displace products with substantial embodied non-CO 2 GHG emissions. Moreover, the gigaton-scale climate benefits we model would require farming very large areas ( 〉 90,000 km 2 )—a 〉 30-fold increase in the area currently farmed. Our results therefore suggest that seaweed-based climate benefits may be feasible, but targeted research and demonstrations are needed to further reduce economic and biophysical uncertainties.
    Type of Medium: Online Resource
    ISSN: 2055-0278
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2815502-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Global Change Biology, Wiley, Vol. 20, No. 3 ( 2014-03), p. 754-764
    Abstract: Natural variation and changing climate in coastal oceans subject meroplanktonic organisms to broad ranges of pH and oxygen ([O 2 ]) levels. In controlled‐laboratory experiments we explored the interactive effects of pH , [O 2 ], and semidiurnal pH fluctuations on the survivorship, development, and size of early life stages of two mytilid mussels, Mytilus californianus and M. galloprovincialis . Survivorship of larvae was unaffected by low pH , low [O 2 ], or semidiurnal fluctuations for both mytilid species. Low pH ( 〈 7.6) resulted in delayed transition from the trochophore to veliger stage, but this effect of low pH was absent when incorporating semidiurnal fluctuations in both species. Also at low pH , larval shells were smaller and had greater variance; this effect was absent when semidiurnal fluctuations of 0.3 units were incorporated at low pH for M. galloprovincialis but not for M. californianus . Low [O 2 ] in combination with low pH had no effect on larval development and size, indicating that early life stages of mytilid mussels are largely tolerant to a broad range of [O 2 ] reflective of their environment (80–260  μ mol kg −1 ). The role of pH variability should be recognized as an important feature in coastal oceans that has the capacity to modulate the effects of ocean acidification on biological responses.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 9, No. 1 ( 2021-09-03)
    Abstract: Short incubation of positive blood cultures on solid media is now increasingly applied to speed up species identification by matrix assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Although Columbia blood agar (CBA) and chocolate agar (Choc) are widely used, a direct comparison of standard agars is lacking. We therefore compared the time to species identification of blood cultures incubated on CBA, Choc, and MacConkey agar (MAC, for Gram-negative rods). Positive aerobic/anaerobic blood cultures (2 drops = 50 μl) were incubated on CBA, Choc, MAC, and the required time of incubation to low-confidence identification (score of ≥1.7 to 〈 2) and high-confidence identification (score of ≥2) by MALDI-TOF MS was measured. Exclusion criteria were (i) false-positive blood cultures, (ii) mixed cultures with different species, (iii) growth of anaerobes/fungi, and (iv) a total number of isolates of one group (i.e., Gram-positive/-negative cocci/rods) of 〈 30. A total of 187 blood cultures with Gram-positive cocci ( n  = 124) and Gram-negative rods ( n  = 63) were included in the final analysis. The shortest median time to high-confidence identification (score of ≥2) was achieved on MAC for Gram-negative rods (2.0 h; range, 1.9 to 4.2 h) and on CBA for Gram-positive cocci (4.0 h; range, 1.9 to 25.0 h). However, the difference from results obtained with Choc was not statistically significant. When only one agar plate is used for short incubation of positive blood cultures, Choc may represent a compromise in terms of time to high-confidence identification by MALDI-TOF MS and the bacterial spectrum that is covered. However, using only Choc is disadvantageous when the shortest incubation times to identification are strived for. IMPORTANCE When blood cultures are flagged as positive, they are incubated on solid media to produce enough biomass of the bacterium for identification and susceptibility testing. Rapid turnaround times for laboratory results could save lives, and we wanted to assess which solid medium is best to shorten the time to species identification using MALDI-TOF mass spectrometry. For that purpose, we used positive blood cultures from routine diagnostics and compared Columbia blood agar (CBA), Chocolate agar (Choc), and MacConkey agar (MAC, for Gram-negative rods). We found that MAC performed best for Gram-negative rods and CBA was quickest for Gram-positive cocci. However, Choc may represent a compromise if fastidious species should be covered.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 42, No. 10 ( 2015-05-28), p. 4080-4088
    Abstract: Geologic and habitat characterization of a methane seep offshore southern CA Localized fluid flow controlled by restraining bend in San Diego Trough Fault Fault segment boundary role in fluid flow in strike‐slip fault zones
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...