GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Microbial Ecology Vol. 83, No. 1 ( 2022-01), p. 167-181
    In: Microbial Ecology, Springer Science and Business Media LLC, Vol. 83, No. 1 ( 2022-01), p. 167-181
    Type of Medium: Online Resource
    ISSN: 0095-3628 , 1432-184X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1462065-0
    detail.hit.zdb_id: 188257-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Microbial Ecology Vol. 79, No. 3 ( 2020-4), p. 731-742
    In: Microbial Ecology, Springer Science and Business Media LLC, Vol. 79, No. 3 ( 2020-4), p. 731-742
    Type of Medium: Online Resource
    ISSN: 0095-3628 , 1432-184X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1462065-0
    detail.hit.zdb_id: 188257-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Oikos, Wiley, Vol. 130, No. 6 ( 2021-06), p. 831-843
    Abstract: Biodiversity science encompasses multiple disciplines and biological scales from molecules to landscapes. Nevertheless, biodiversity data are often analyzed separately with discipline‐specific methodologies, constraining resulting inferences to a single scale. To overcome this, we present a topic modeling framework to analyze community composition in cross‐disciplinary datasets, including those generated from metagenomics, metabolomics, field ecology and remote sensing. Using topic models, we demonstrate how community detection in different datasets can inform the conservation of interacting plants and herbivores. We show how topic models can identify members of molecular, organismal and landscape‐level communities that relate to wildlife health, from gut microbes to forage quality. We conclude with a future vision for how topic modeling can be used to design cross‐scale studies that promote a holistic approach to detect, monitor and manage biodiversity.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 2020
    In:  Applied and Environmental Microbiology Vol. 86, No. 3 ( 2020-01-21)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 3 ( 2020-01-21)
    Abstract: Adult mosquitoes inherit a bacterial community from larvae via transstadial transmission, an understudied process that may influence host-microbe interactions. Microbes contribute to important host life history traits, and analyzing transmitted microbial communities, the interrelationship between larval and adult-associated microbiota, and factors influencing host-microbe relationships provides targets for research. During its larval stage, the yellow fever mosquito ( Aedes aegypti ) hosts the trichomycete gut fungus Zancudomyces culisetae , and fungal colonization coincides with environmental perturbations in the digestive tract microecosystem. Natural populations are differentially exposed to fungi, thereby potentially harboring distinct microbiota and experiencing disparate host-microbe interactions. This study’s objectives were to characterize larval and initial adult microbiomes, investigate variation in diversity and distribution of microbial communities across individuals, and assess whether larval fungal colonization impacted microbiomes at these developmental stages. Laboratory-based fungal infestation assays, sequencing of 16S rRNA gene amplicons, and bacterial load quantification protocols revealed that initial adult microbiomes varied in diversity and distribution. Larval fungal colonization had downstream effects on initial adult microbiomes, significantly reducing microbial community variation, shifting relative abundances of certain bacterial families, and influencing transstadial transmission outcomes of particular genera. Further, abundances of several families consistently decreased in adults relative to levels in larvae, possibly reflecting impacts of host development on specific bacterial taxa. These findings demonstrated that a prolific gut fungus impacted mosquito-associated microbiota at two developmental stages in an insect connected with global human health. IMPORTANCE Mosquitoes are widespread vectors of numerous human pathogens and harbor microbiota known to affect host phenotypic traits. However, little research has directly investigated how bacterial communities associated with larvae and adults are connected. We characterized whole-body bacterial communities in mosquito larvae preceding pupation and in newly emerged adults, and investigated whether a significant biotic factor, fungal colonization of the larval hindgut, impacted these microbiomes. Results showed that fungal colonization reduced microbial community variation across individuals and differentially impacted the outcomes of transstadial transmission for certain bacterial genera, revealing downstream effects of the fungus on initial adult microbiomes. The importance of our research is in providing a thorough comparative analysis of whole-body microbiota harbored in larvae and adults of the yellow fever mosquito ( Aedes aegypti ) and in demonstrating the important role a widespread gut fungus played in a host-associated microbiome.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Scientific Reports Vol. 10, No. 1 ( 2020-07-30)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-07-30)
    Abstract: Research characterizing arthropod-associated microbiota has revealed that microbial dynamics can have an important impact on host phenotypic traits. The influence of fungi on these interactions are emerging as targets for research, especially in organisms associated with global human health. A recent study demonstrated colonization of a widespread gut fungus ( Zancudomyces culisetae ) in a larval mosquito ( Aedes aegypti ) digestive tract affected microbiomes in larvae and newly emerged adult females (Frankel-Bricker et al. Appl Environ Microbiol, 2020. https://doi.org/10.1128/AEM.02334-19 ) but did not investigate these processes in males. The objective of the study presented here was to assess fungal influences on adult male mosquito microbiomes to enable a more complete assessment of fungal–bacterial–host interactions in the A. aegypti – Z. culisetae system. Sequencing of 16S rRNA gene amplicons from microbiomes harbored in adult males directly after emerging from pupae revealed larval fungal exposure significantly decreased overall microbial community diversity, altered microbiome composition and structure, and decreased within-group microbiome variation across individuals. Further, bacteria in the family Burkholderiaceae were present in high abundance in fungal-exposed males, likely contributing to the disparate microbiota between treatment groups. Comparisons between male and the female microbiomes analyzed in Frankel-Bricker et al. (2020), showed distinct shifts in bacterial communities incurred by larval exposure to fungi, potentially revealing sex-specific fungal–bacterial–host dynamics in A. aegypti . These findings highlight the complex role a gut fungus can play in influencing the microbial communities harbored in an important insect and emphasize the significance of accounting for an organism’s sex when studying fungal–bacterial–host dynamics.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...