GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Osteoarthritis and Cartilage, Elsevier BV, Vol. 32, No. 6 ( 2024-06), p. 784-
    Type of Medium: Online Resource
    ISSN: 1063-4584
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1167809-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  WIREs Nanomedicine and Nanobiotechnology Vol. 14, No. 3 ( 2022-05)
    In: WIREs Nanomedicine and Nanobiotechnology, Wiley, Vol. 14, No. 3 ( 2022-05)
    Abstract: With the change in lifestyle and aging of the population, osteoarthritis (OA) is emerging as a major medical burden globally. OA is a chronic inflammatory and degenerative disease initially manifesting with joint pain and eventually leading to permanent disability. To date, there are no drugs available for the definitive treatment of osteoarthritis and most therapies have been palliative in nature by alleviating symptoms rather than curing the disease. This coupled with the vague understanding of the early symptoms and methods of diagnosis so that the disease continues as a global problem and calls for concerted research efforts. A cascade of events regulates the onset and progression of osteoarthritis starting with the production of proinflammatory cytokines, including interleukin (IL)‐1β, IL‐6, tumor necrosis factor (TNF)‐α; catabolic enzymes, such as matrix metalloproteinases (MMPs)‐1, ‐3, and ‐13, culminating into cartilage breakdown, loss of lubrication, pain, and inability to load the joint. Although intra‐articular injections of small and macromolecules are often prescribed to alleviate symptoms, low residence times within the synovial cavity severely impair their efficacy. This review will briefly describe the factors dictating the onset and progression of the disease, present the current clinically approved methods for its treatment and diagnosis, and finally elaborate on the main challenges and opportunities for the application of nano/micromedicines in the treatment of osteoarthritis. Thus, future treatment regimens will benefit from simultaneous consideration of the mechanobiological, the inflammatory, and tissue degradation aspects of the disease. This article is categorized under: Nanotechnology Approaches to Biology 〉 Nanoscale Systems in Biology Implantable Materials and Surgical Technologies 〉 Nanotechnology in Tissue Repair and Replacement
    Type of Medium: Online Resource
    ISSN: 1939-5116 , 1939-0041
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2483266-2
    detail.hit.zdb_id: 2502698-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pharmacological Research, Elsevier BV, Vol. 188 ( 2023-02), p. 106639-
    Type of Medium: Online Resource
    ISSN: 1043-6618
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1003347-6
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Friction, Springer Science and Business Media LLC, Vol. 12, No. 3 ( 2024-03), p. 539-553
    Abstract: Nano- and micro-particles are being increasingly used to tune interfacial frictional properties in diverse applications, from friction modifiers in industrial lubrication to enhanced biological fluids in human osteoarthritic joints. Here, we assessed the tribological properties of a simulated synovial fluid enriched with non-spherical, poly lactic-co-glycolic acid (PLGA) microparticles (µPL) that have been previously demonstrated for the pharmacological management of osteoarthritis (OA). Three different µPL configurations were fabricated presenting a 20 µm × 20 µm square base and a thickness of 5 µm (thin, 5H µPL), 10 µm (10H µPL), and 20 µm (cubical, 20H µPL). After extensive morphological and physicochemical characterizations, the apparent Young’s modulus of the µPL was quantified under compressive loading returning an average value of ∼ 6 kPa, independently of the particle morphology. Then, using a linear two-axis tribometer, the static ( µ s ) and dynamic ( µ d ) friction coefficients of the µPL-enriched simulated synovial fluid were determined in terms of particle configuration and concentration, varying from 0 (fluid only) to 6µ10 5 µPL/mL. The particle morphology had a modest influence on friction, possibly because the µPL were fully squeezed between two mating surfaces by a 5.8 N normal load realizing boundary-like lubrication conditions. Differently, friction was observed to depend on the dimensionless parameter Ω , defined as the ratio between the total volume of the µPL enriching the simulated synovial fluid and the volume of the fluid itself. Both coefficients of friction were documented to grow with Ω reaching a plateau of µ s ∼ 0.4 and µ d ∼ 0.15, already at Ω ∼ 2×10 −3 . Future investigations will have to systematically analyze the effect of sliding velocity, normal load, and rigidity of the mating surfaces to elucidate in full the tribological behavior of µPL in the context of osteoarthritis.
    Type of Medium: Online Resource
    ISSN: 2223-7690 , 2223-7704
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2024
    detail.hit.zdb_id: 2787589-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 5069-5069
    Abstract: Introduction: Neuroblastoma (NB) is a form of extracranial tumor derived from the sympathetic nervous system that affects most often infants and young children. It is a very heterogeneous tumor with different levels of aggressiveness. Despite the multiple therapeutic strategies (i.e. aggressive chemotherapy, surgery, radiotherapy, immunotherapy), the outcome in advanced stages or recurrent diseases is negative. New strategies are needed to improve the therapeutic efficacy of existing drugs and reduce their toxicity. Nanotechnology represents a good tool for reaching this goal. Taken this in mind, the focus of this experimental work was to engineer polymeric biodegradable nanomedicines for co-delivering anti-inflammatory and chemotherapeutic molecules to NB malignant masses. More specifically, the work focused on the synthesis, physico-chemical and biopharmaceutical characterization, in vitro testing and in vivo validation of nanomedicines loaded with the cytotoxic drug Docetaxel (DTXL) and the natural anti-inflammatory compound, Curcumin (CURC). Methods: Four configurations of Spherical Polymeric Nanoparticles (SPNs) - loaded with CURC (CURC-SPNs), loaded with DTXL (DTXL-SPNs), loaded with the combination thereof (CURC/DTXL-SPNs), and empty (SPNs) - were synthesized using an oil-in water emulsion/solvent evaporation technique. SPNs size, zeta potential, and polydispersity index (PDI) were measured by dynamic light scattering. The toxicity of SPNs was determined by an MTT assay on the human NB cell line SH-SY5Y. For in vivo efficacy and biodistribution experiments, homozygous CD1 nu/nu athymic female mice (4 to 6-weeks old) were orthotopically injected with SH-SY5Y cells in the left adrenal gland. Results: Empty, DTXL-SPNs, CURC-SPNs, and CURC/DTXL-SPNs were characterized by a narrow size distribution (PdI & lt; 0.15) with an average hydrodynamic diameter of about 185 nm. All the formulations showed a negative surface ζ-potential, associated with the carboxylate groups in the DSPE-PEG coating. A biphasic release profile was observed for all the 3 formulations, with almost 90% of the total drug mass released within the first 24 hours. In vivo results indicated that mice treated with CURC/DTXL -SPNs had a significant increase in life span as compared to untreated mice (control) (p=0.0002), mice treated with CURC-SPNs (p=0.0205), DTXL-SPNs (p=0.0391), and free DTXL (p=0.0054). Biodistribution experiments showed a 2% ID/g accumulation of the injected dose per tumor mass, regardless of the tumor development stage. This behavior is in agreement with results from a longitudinal Magnetic Resonance Imaging analysis of the malignant masses. Conclusion: The obtained results would suggest that nanomedicines could effectively delivery two therapeutic molecules within the malignant mass and modulate its progression leading to a significant increase in overall survival. Citation Format: Agnese Fragassi, Martina Di Francesco, Fabio Pastorino, Miguel Ferreira, Valentina Di Francesco, Anna Lisa Palange, Christian Celia, Luisa Di Marzio, Michele Cilli, Veronica Bensa, Mirco Ponzoni, Paolo Decuzzi. Delivering docetaxel and curcumin via a nano-combination-therapy for modulating the progression of neuroblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5069.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...