GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Astronomy, Springer Science and Business Media LLC, Vol. 4, No. 2 ( 2019-10-28), p. 136-141
    Type of Medium: Online Resource
    ISSN: 2397-3366
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2879712-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 633 ( 2020-1), p. A65-
    Abstract: Context. With an estimated diameter in the 320–350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with D 〉 400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with diameter ≤200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution. Aims. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller ( D ≤ 200 km) bodies. Methods. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state. Results. Interamnia’s volume-equivalent diameter of 332 ± 6 km implies a bulk density of ρ = 1.98 ± 0.68 g cm −3 , which suggests that Interamnia – like Ceres and Hygiea – contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2 σ level. Conclusions. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller ( D ≤ 300 km) less massive ( m ≤ 3 × 10 19 kg) bodies.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 670 ( 2023-2), p. A52-
    Abstract: Context. Cybele asteroids constitute an appealing reservoir of primitive material genetically linked to the outer Solar System, and the physical properties (size and shape) of the largest members can be readily accessed by large (8m class) telescopes. Aims. We took advantage of the bright apparition of the most iconic member of the Cybele population, (65) Cybele, in July and August 2021 to acquire high-angular-resolution images and optical light curves of the asteroid with which we aim to analyse its shape and bulk properties. Methods. Eight series of images were acquired with VLT/SPHERE+ZIMPOL, seven of which were combined with optical light curves to reconstruct the shape of the asteroid using the ADAM , MPCD , and SAGE algorithms. The origin of the shape was investigated by means of N-body simulations. Results. Cybele has a volume-equivalent diameter of 263±3 km and a bulk density of 1.55 ± 0.19 g cm −3 . Notably, its shape and rotation state are closely compatible with those of a Maclaurin equilibrium figure. The lack of a collisional family associated with Cybele and the higher bulk density of that body with respect to other large P-type asteroids suggest that it never experienced any large disruptive impact followed by rapid re-accumulation. This would imply that its present-day shape represents the original one. However, numerical integration of the long-term dynamical evolution of a hypothetical family of Cybele shows that it is dispersed by gravitational perturbations and chaotic diffusion over gigayears of evolution. Conclusions. The very close match between Cybele and an equilibrium figure opens up the possibility that D ≥ 260 km ( M ≥ 1.5 × 10 19 kg) small bodies from the outer Solar System all formed at equilibrium. However, we cannot currently rule out an old impact as the origin of the equilibrium shape of Cybele. Cybele itself is found to be dynamically unstable, implying that it was ‘recently’ ( 〈 1 Gyr ago) placed on its current orbit either through slow diffusion from a relatively stable orbit in the Cybele region or, less likely, from an unstable, Jupiter-family-comet orbit in the planet-crossing region.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 650 ( 2021-6), p. A129-
    Abstract: Context. Dynamical models of Solar System evolution have suggested that the so-called P- and D-type volatile-rich asteroids formed in the outer Solar System beyond Neptune’s orbit and may be genetically related to the Jupiter Trojans, comets, and small Kuiper belt objects (KBOs). Indeed, the spectral properties of P- and D-type asteroids resemble that of anhydrous cometary dust. Aims. We aim to gain insights into the above classes of bodies by characterizing the internal structure of a large P- and D-type asteroid. Methods. We report high-angular-resolution imaging observations of the P-type asteroid (87) Sylvia with the Very Large Telescope Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument. These images were used to reconstruct the 3D shape of Sylvia. Our images together with those obtained in the past with large ground-based telescopes were used to study the dynamics of its two satellites. We also modeled Sylvia’s thermal evolution. Results. The shape of Sylvia appears flattened and elongated (a/b ~1.45; a/c ~1.84). We derive a volume-equivalent diameter of 271 ± 5 km and a low density of 1378 ± 45 kg m −3 . The two satellites orbit Sylvia on circular, equatorial orbits. The oblateness of Sylvia should imply a detectable nodal precession which contrasts with the fully-Keplerian dynamics of its two satellites. This reveals an inhomogeneous internal structure, suggesting that Sylvia is differentiated. Conclusions. Sylvia’s low density and differentiated interior can be explained by partial melting and mass redistribution through water percolation. The outer shell should be composed of material similar to interplanetary dust particles (IDPs) and the core should be similar to aqueously altered IDPs or carbonaceous chondrite meteorites such as the Tagish Lake meteorite. Numerical simulations of the thermal evolution of Sylvia show that for a body of such a size, partial melting was unavoidable due to the decay of long-lived radionuclides. In addition, we show that bodies as small as 130–150 km in diameter should have followed a similar thermal evolution, while smaller objects, such as comets and the KBO Arrokoth, must have remained pristine, which is in agreement with in situ observations of these bodies. NASA Lucy mission target (617) Patroclus (diameter ≈140 km) may, however, be differentiated.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 654 ( 2021-10), p. A56-
    Abstract: Context. Until recently, the 3D shape, and therefore density (when combining the volume estimate with available mass estimates), and surface topography of the vast majority of the largest ( D   ≥ 100 km) main-belt asteroids have remained poorly constrained. The improved capabilities of the SPHERE/ZIMPOL instrument have opened new doors into ground-based asteroid exploration. Aims. To constrain the formation and evolution of a representative sample of large asteroids, we conducted a high-angular-resolution imaging survey of 42 large main-belt asteroids with VLT/SPHERE/ZIMPOL. Our asteroid sample comprises 39 bodies with D   ≥ 100 km and in particular most D   ≥ 200 km main-belt asteroids (20/23). Furthermore, it nicely reflects the compositional diversity present in the main belt as the sampled bodies belong to the following taxonomic classes: A, B, C, Ch/Cgh, E/M/X, K, P/T, S, and V. Methods. The SPHERE/ZIMPOL images were first used to reconstruct the 3D shape of all targets with both the ADAM and MPCD reconstruction methods. We subsequently performed a detailed shape analysis and constrained the density of each target using available mass estimates including our own mass estimates in the case of multiple systems. Results. The analysis of the reconstructed shapes allowed us to identify two families of objects as a function of their diameters, namely “spherical” and “elongated” bodies. A difference in rotation period appears to be the main origin of this bimodality. In addition, all but one object (216 Kleopatra) are located along the Maclaurin sequence with large volatile-rich bodies being the closest to the latter. Our results further reveal that the primaries of most multiple systems possess a rotation period of shorter than 6 h and an elongated shape ( c ∕ a ≤ 0.65). Densities in our sample range from ~1.3 g cm −3 (87 Sylvia) to ~4.3 g cm −3 (22 Kalliope). Furthermore, the density distribution appears to be strongly bimodal with volatile-poor ( ρ ≥ 2.7 g cm −3 ) and volatile-rich ( ρ ≤ 2.2 g cm −3 ) bodies. Finally, our survey along with previous observations provides evidence in support of the possibility that some C-complex bodies could be intrinsically related to IDP-like P- and D-type asteroids, representing different layers of a same body (C: core; P/D: outer shell). We therefore propose that P/ D-types and some C-types may have the same origin in the primordial trans-Neptunian disk.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 623 ( 2019-3), p. A132-
    Abstract: Context. CM-like asteroids (Ch and Cgh classes) are a major population within the broader C-complex, encompassing about 10% of the mass of the main asteroid belt. Their internal structure has been predicted to be homogeneous, based on their compositional similarity as inferred from spectroscopy and numerical modeling of their early thermal evolution. Aims. Here we aim to test this hypothesis by deriving the density of the CM-like asteroid (41) Daphne from detailed modeling of its shape and the orbit of its small satellite. Methods. We observed Daphne and its satellite within our imaging survey with the Very Large Telescope extreme adaptive-optics SPHERE/ZIMPOL camera and complemented this data set with earlier Keck/NIRC2 and VLT/NACO observations. We analyzed the dynamics of the satellite with our Genoid meta-heuristic algorithm. Combining our high-angular resolution images with optical lightcurves and stellar occultations, we determine the spin period, orientation, and 3D shape, using our ADAM shape modeling algorithm. Results. The satellite orbits Daphne on an equatorial, quasi-circular, prograde orbit, like the satellites of many other large main-belt asteroids. The shape model of Daphne reveals several large flat areas that could be large impact craters. The mass determined from this orbit combined with the volume computed from the shape model implies a density for Daphne of 1.77 ± 0.26 g cm −3 (3 σ ). This densityis consistent with a primordial CM-like homogeneous internal structure with some level of macroporosity (≈ 17%). Conclusions. Based on our analysis of the density of Daphne and 75 other Ch/Cgh-type asteroids gathered from the literature, we conclude that the primordial internal structure of the CM parent bodies was homogeneous.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 628 ( 2019-08), p. A99-
    Abstract: Context. Adaptive optics (AO) systems greatly increase the resolution of large telescopes, but produce complex point spread function (PSF) shapes, varying in time and across the field of view. The PSF must be accurately known since it provides crucial information about optical systems for design, characterization, diagnostics, and image post-processing. Aims. We develop here a model of the AO long-exposure PSF, adapted to various seeing conditions and any AO system. This model is made to match accurately both the core of the PSF and its turbulent halo. Methods. The PSF model we develop is based on a parsimonious parameterization of the phase power spectral density, with only five parameters to describe circularly symmetric PSFs and seven parameters for asymmetrical ones. Moreover, one of the parameters is the Fried parameter r 0 of the turbulence’s strength. This physical parameter is an asset in the PSF model since it can be correlated with external measurements of the r 0 , such as phase slopes from the AO real time computer (RTC) or site seeing monitoring. Results. We fit our model against end-to-end simulated PSFs using the OOMAO tool, and against on-sky PSFs from the SPHERE/ZIMPOL imager and the MUSE integral field spectrometer working in AO narrow-field mode. Our model matches the shape of the AO PSF both in the core and the halo, with a relative error smaller than 1% for simulated and experimental data. We also show that we retrieve the r 0 parameter with sub-centimeter precision on simulated data. For ZIMPOL data, we show a correlation of 97% between our r 0 estimation and the RTC estimation. Finally, MUSE allows us to test the spectral dependency of the fitted r 0 parameter. It follows the theoretical λ 6/5 evolution with a standard deviation of 0.3 cm. Evolution of other PSF parameters, such as residual phase variance or aliasing, is also discussed.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 619 ( 2018-11), p. L3-
    Abstract: Context . Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however challenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Aims . Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. Methods . We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyche’s three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. Results . We derived a bulk density of 3.99 ± 0.26 g  cm −3 for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites (∼7.8 g  cm −3 ), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density ∼4.25 g  cm −3 ). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460 ± 200 m at 150 km from Psyche (0.2% × R Hill , the Hill radius) and 800 ± 200 m at 2000 km (3% × R Hill ). Conclusions . Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 662 ( 2022-6), p. A71-
    Abstract: Context. Asteroid (22) Kalliope is the second largest M-type asteroid in the main belt and is orbited by a satellite, Linus. Whereas the mass of Kalliope is already well constrained thanks to the presence of a moon, its volume is still poorly known, leading to uncertainties on its bulk density and internal structure. Aims. We aim to refine the shape of (22) Kalliope and thus its diameter and bulk density, as well as the orbit of its moon to better constrain its mass, hence density and internal structure. Methods. We acquired disk-resolved observations of (22) Kalliope using the VLT/SPHERE/ZIMPOL instrument to reconstruct its three-dimensional (3D) shape using three different modeling techniques. These images were also used together with new speckle observations at the C2PU/PISCO instrument as well as archival images from other large ground-based telescopes to refine the orbit of Linus. Results. The volume of (22) Kalliope given by the shape models, corresponding to D = 150 ± 5 km, and the mass constrained by its satellite’s orbit yield a density of ρ = 4.40 ± 0.46 g cm −3 . This high density potentially makes (22) Kalliope the densest known small body in the Solar System. A macroporosity in the 10–25% range (as expected for this mass and size), implies a grain density in the 4.8–5.9 g cm −3 range. Kalliope’s high bulk density, along with its silicate-rich surface implied by its low radar albedo, implies a differentiated interior with metal contributing to most of the mass of the body. Conclusions. Kalliope’s high metal content (40–60%) along with its metal-poor mantle makes it the smallest known Mercury-like body. A large impact at the origin of the formation of the moon Linus is likely the cause of its high metal content and density.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 653 ( 2021-9), p. A56-
    Abstract: Aims. To interpret adaptive-optics observations of (216) Kleopatra, we need to describe an evolution of multiple moons orbiting an extremely irregular body and include their mutual interactions. Such orbits are generally non-Keplerian and orbital elements are not constants. Methods. Consequently, we used a modified N -body integrator, which was significantly extended to include the multipole expansion of the gravitational field up to the order ℓ = 10. Its convergence was verified against the ‘brute-force’ algorithm. We computed the coefficients C ℓm , S ℓm for Kleopatra’s shape, assuming a constant bulk density. For Solar System applications, it was also necessary to implement a variable distance and geometry of observations. Our χ 2 metric then accounts for the absolute astrometry, the relative astrometry (second moon with respect to the first), angular velocities, and silhouettes, constraining the pole orientation. This allowed us to derive the orbital elements of Kleopatra’s two moons. Results. Using both archival astrometric data and new VLT/SPHERE observations (ESO LP 199.C-0074), we were able to identify the true periods of the moons, P 1 = (1.822359 ± 0.004156) d, P 2 = (2.745820 ± 0.004820) d. They orbit very close to the 3:2 mean-motion resonance, but their osculating eccentricities are too small compared to other perturbations (multipole, mutual), meaning that regular librations of the critical argument are not present. The resulting mass of Kleopatra, m 1 = (1.49 ± 0.16) × 10 −12 M ⊙ or 2.97 × 10 18 kg, is significantly lower than previously thought. An implication explained in the accompanying paper is that (216) Kleopatra is a critically rotating body.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...