GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Person/Organisation
Language
  • 1
    In: Environmental Microbiology, Wiley, Vol. 16, No. 7 ( 2014-07), p. 2126-2144
    Abstract: During adaptation to environments, bacteria employ two‐component signal transduction systems, which contain histidine kinases and response regulators, to sense and respond to exogenous and cellular stimuli in an accurate spatio‐temporal manner. Although the protein phosphorylation process between histidine kinase and response regulator has been well documented, the molecular mechanism fine‐tuning phosphorylation levels of response regulators is comparatively less studied. Here we combined genetic and biochemical approaches to reveal that a hybrid histidine kinase, SreS , is involved in the SreK ‐ SreR phosphotransfer process to control salt stress response in the bacterium X anthomonas campestris . The N ‐terminal receiver domain of SreS acts as a phosphate sink by competing with the response regulator SreR to accept the phosphoryl group from the latter's cognate histidine kinase SreK . This regulatory process is critical for bacterial survival because the dephosphorylated SreR protein participates in activating one of the tandem promoters ( P 2) at the 5′ end of the sreK ‐ sreR ‐ sreS ‐ hppK operon, and then modulates a transcriptional surge of the stress‐responsive gene hppK , which is required for folic acid synthesis. Therefore, our study dissects the biochemical process of a positive feedback loop in which a ‘three‐component’ signalling system fine‐tunes expression kinetics of downstream genes.
    Type of Medium: Online Resource
    ISSN: 1462-2912 , 1462-2920
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2020213-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 1990
    In:  Nucleic Acids Research Vol. 18, No. 18 ( 1990), p. 5554-5554
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 18, No. 18 ( 1990), p. 5554-5554
    Type of Medium: Online Resource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 1990
    detail.hit.zdb_id: 1472175-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2007
    In:  Journal of Virology Vol. 81, No. 17 ( 2007-09), p. 9142-9151
    In: Journal of Virology, American Society for Microbiology, Vol. 81, No. 17 ( 2007-09), p. 9142-9151
    Abstract: It has been reported that plant virus-derived small interfering RNAs (vsiRNAs) originated predominantly from structured single-stranded viral RNA of a positive single-stranded RNA virus replicating in the cytoplasm and from the nuclear stem-loop 35S leader RNA of a double-stranded DNA (dsDNA) virus. Increasing lines of evidence have also shown that hierarchical actions of plant Dicer-like (DCL) proteins are required in the biogenesis process of small RNAs, and DCL4 is the primary producer of vsiRNAs. However, the structures of such single-stranded viral RNA that can be recognized by DCLs remain unknown. In an attempt to determine these structures, we have cloned siRNAs derived from the satellite RNA (satRNA) of Cucumber mosaic virus (CMV-satRNA) and studied the relationship between satRNA-derived siRNAs (satsiRNAs) and satRNA secondary structure. satsiRNAs were confirmed to be derived from single-stranded satRNA and are primarily 21 (64.7%) or 22 (22%) nucleotides (nt) in length. The most frequently cloned positive-strand satsiRNAs were found to derive from novel hairpins that differ from the structure of known DCL substrates, miRNA and siRNA precursors, which are prevalent stem-loop-shaped or dsRNAs. DCL4 was shown to be the primary producer of satsiRNAs. In the absence of DCL4, only 22-nt satsiRNAs were detected. Our results suggest that DCL4 is capable of accessing flexibly structured single-stranded RNA substrates (preferably T-shaped hairpins) to produce satsiRNAs. This result reveals that viral RNA of diverse structures may stimulate antiviral DCL activities in plant cells.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2016-10-27)
    Abstract: In Arabidopsis , the 24-nucleotide (nt) small interfering RNAs (siRNAs) mediates RNA-directed DNA methylation (RdDM) and transcriptional gene silencing (TGS) of transposable elements (TEs). In the present study, we examined genome-wide changes in DNA methylation and siRNA accumulation in Arabidopsis induced by expression of the Cucumber mosaic virus silencing suppressor protein 2b known to directly bind to both the 21/24-nt siRNAs as well as their associated Argonaute proteins. We demonstrated a genome-wide reduction of CHH and CHG methylation in the 2b-transgenic plants. We found that 2b suppressed RdDM not only at the previously annotated loci directed by 24-nt siRNAs but also a new set of loci associated with 21/22-nt siRNAs. Further analysis showed that the reduced methylation of TEs and coding genes targeted by 21/22-nt siRNAs was associated with sequestration of the duplex siRNAs by the 2b protein but not with changes in either siRNA production or transcription. Notably, we detected both the deletion and/or the transposition of multicopy TEs associated with 2b-induced hypomethylation, suggesting potential TE reactivation. We propose that the silencing of many TEs in Arabidopsis is controlled by the 24- and 21-nt endogenous siRNAs analogous to Drosophila TE silencing by PIWI-interacting RNAs and siRNAs.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  Viruses Vol. 10, No. 11 ( 2018-11-09), p. 618-
    In: Viruses, MDPI AG, Vol. 10, No. 11 ( 2018-11-09), p. 618-
    Abstract: RNA silencing (or RNA interference, RNAi) plays direct roles in plant host defenses against viruses. Viruses encode suppressors of RNAi (VSRs) to counteract host antiviral defenses. The generation of transgenic plants expressing VSRs facilitates the understanding of the mechanisms of VSR-mediated interference with the endogenous silencing pathway. However, studying VSRs independent of other viral components simplifies the complex roles of VSRs during natural viral infection. While suppression of transgene silencing by the VSR 2b protein encoded by cucumber mosaic virus (CMV) requires 2b-small RNA (sRNA) binding activity, suppression of host antiviral defenses requires the binding activity of both sRNAs and AGOs proteins. This study, aimed to understand the functions of 2b in the context of CMV infection; thus, we performed genome-wide analyses of differential DNA methylation regions among wild-type CMV-infected, CMVΔ2b-infected, and 2b-transgenic Arabidopsis plants. These analyses, together with transcriptome sequencing and RT-qPCR analyses, show that while the majority of induced genes in 2b-transgenic plants were involved in extensive metabolic pathways, CMV-infection 2b-dependent induced genes were enriched in plant immunity pathways, including salicylic acid (SA) signaling. Together with infection with CMV mutants that expressed the 2b functional domains of sRNA or AGO binding, our data demonstrate that CMV-accelerated SA signaling depends on 2b-sRNA binding activity which is also responsible for virulence.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Plant Cell, Oxford University Press (OUP), Vol. 22, No. 4 ( 2010-06-04), p. 1358-1372
    Abstract: Endogenous eukaryotic RNA-dependent RNA polymerases (RDRs) produce double-stranded RNA intermediates in diverse processes of small RNA synthesis in RNA silencing pathways. RDR6 is required in plants for posttranscriptional gene silencing induced by sense transgenes (S-PTGS) and has an important role in amplification of antiviral silencing. Whereas RDR1 is also involved in antiviral defense in plants, this does not necessarily proceed through triggering silencing. In this study, we show that Nicotiana benthamiana transformed with RDR1 from Nicotiana tabacum (Nt-RDR1 plants) exhibits hypersusceptibility to Plum pox potyvirus and other viruses, resembling RDR6-silenced (RDR6i) N. benthamiana. Analysis of transient induction of RNA silencing in N. benthamiana Nt-RDR1 and RDR6i plants revealed that Nt-RDR1 possesses silencing suppression activity. We found that Nt-RDR1 does not interfere with RDR6-dependent siRNA accumulation but turns out to suppress RDR6-dependent S-PTGS. Our results, together with previously published data, suggest that RDR1 might have a dual role, contributing, on one hand, to salicylic acid–mediated antiviral defense, and suppressing, on the other hand, the RDR6-mediated antiviral RNA silencing. We propose a scenario in which the natural loss-of-function variant of RDR1 in N. benthamiana may be the outcome of selective pressure to maintain a high RDR6-dependent antiviral defense, which would be required to face the hypersensitivity of this plant to a large number of viruses.
    Type of Medium: Online Resource
    ISSN: 1532-298X , 1040-4651
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2010
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Journal of Virology Vol. 82, No. 22 ( 2008-11-15), p. 11084-11095
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 22 ( 2008-11-15), p. 11084-11095
    Abstract: Short-hairpin RNAs based on microRNA (miRNA) precursors to express the artificial miRNAs (amiRNAs) can specifically induce gene silencing and confer virus resistance in plants. The efficacy of RNA silencing depends not only on the nature of amiRNAs but also on the local structures of the target mRNAs. However, the lack of tools to accurately and reliably predict secondary structures within long RNAs makes it very hard to predict the secondary structures of a viral genome RNA in the natural infection conditions in vivo. In this study, we used an experimental approach to dissect how the endogenous silencing machinery acts on the 3′ untranslated region (UTR) of the Cucumber mosaic virus (CMV) genome. Transiently expressed 3′UTR RNAs were degraded by site-specific cleavage. By comparing the natural cleavage hotspots within the 3′UTR of the CMV-infected wild-type Arabidopsis to those of the triple dcl2/3/4 mutant, we acquired true small RNA programmed RNA-induced silencing complex (siRISC)-mediated cleavage sites to design valid amiRNAs. We showed that the tRNA-like structure within the 3′UTR impeded target site access and restricted amiRNA-RISC-mediated cleavage of the target viral RNA. Moreover, target recognition in the less-structured area also influenced siRISC catalysis, thereby conferring different degrees of resistance to CMV infection. Transgenic plants expressing the designed amiRNAs that target the putative RISC accessible target sites conferred high resistance to the CMV challenge from both CMV subgroup strains. Our work suggests that the experimental approach is credible for studying the course of RISC target recognition to engineer effective gene silencing and virus resistance in plants by amiRNAs.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2009
    In:  FEBS Letters Vol. 583, No. 1 ( 2009-01-05), p. 101-106
    In: FEBS Letters, Wiley, Vol. 583, No. 1 ( 2009-01-05), p. 101-106
    Type of Medium: Online Resource
    ISSN: 0014-5793
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2009
    detail.hit.zdb_id: 1460391-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2011
    In:  BMC Genomics Vol. 12, No. 1 ( 2011-12)
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2011-12)
    Abstract: Small non-coding RNAs (sRNAs) are regarded as important regulators in prokaryotes and play essential roles in diverse cellular processes. Xanthomonas oryzae pathovar oryzae ( Xoo ) is an important plant pathogenic bacterium which causes serious bacterial blight of rice. However, little is known about the number, genomic distribution and biological functions of sRNAs in Xoo . Results Here, we performed a systematic screen to identify sRNAs in the Xoo strain PXO99. A total of 850 putative non-coding RNA sequences originated from intergenic and gene antisense regions were identified by cloning, of which 63 were also identified as sRNA candidates by computational prediction, thus were considered as Xoo sRNA candidates. Northern blot hybridization confirmed the size and expression of 6 sRNA candidates and other 2 cloned small RNA sequences, which were then added to the sRNA candidate list. We further examined the expression profiles of the eight sRNAs in an hfq deletion mutant and found that two of them showed drastically decreased expression levels, and another exhibited an Hfq-dependent transcript processing pattern. Deletion mutants were obtained for seven of the Northern confirmed sRNAs, but none of them exhibited obvious phenotypes. Comparison of the proteomic differences between three of the ΔsRNA mutants and the wild-type strain by two-dimensional gel electrophoresis (2-DE) analysis showed that these sRNAs are involved in multiple physiological and biochemical processes. Conclusions We experimentally verified eight sRNAs in a genome-wide screen and uncovered three Hfq-dependent sRNAs in Xoo . Proteomics analysis revealed Xoo sRNAs may take part in various metabolic processes. Taken together, this work represents the first comprehensive screen and functional analysis of sRNAs in rice pathogenic bacteria and facilitates future studies on sRNA-mediated regulatory networks in this important phytopathogen.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Plant, Elsevier BV, Vol. 4, No. 1 ( 2011-01), p. 190-197
    Type of Medium: Online Resource
    ISSN: 1674-2052
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2393618-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...