GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 4027-4027
    Abstract: Glioblastoma multiforme (GBM) is the most prevalent form of primary brain cancer in adults. Cancer stem cells (CSCs) are thought to drive the growth and metastasis of tumors, and are readily isolated from GBM patient tumors. These GBM CSCs are maintained under serum-free conditions in neurosphere media, and form tumors upon orthotopic injection in mice. However, when grown in the presence of serum, GBM CSCs undergo morphological changes, have reduced proliferation, exhibit loss of stem cell markers, and have reduced tumorigenicity following orthotopic implantation into the brains of immune compromised mice. Upon return to serum-free neurosphere media, these GBM CSCs revert to neurospheres. We set out to define the transcriptional incongruities between these culture condition-dependent states, and the underlying epigenetic changes which regulate these differences in gene expression. Although genetic alterations in cancer are irreversible, epigenetic changes are inherently reversible, and we hypothesize that the plasticity between culture condition-dependent states is mediated by epigenetic regulation of genes relevant to the ability of these cells to form tumors. Recently, a novel epigenetic mark, 5-hydroxymethylcytosine (5hmC), has been shown to be enriched at regulatory elements within polycomb target genes in embryonic stem cells, and is frequently found at genes that are involved in the maintenance of stem cells. We found that 5hmC levels of several polycomb target genes, including p16INK4A and several components of the TGF-beta pathway involved in epithelial to mesenchymal transition (EMT), are altered in neurospheres compared to CSCs cultured in serum. Loss of p16INK4A expression has recently been associated with increased CSC abundance in breast cancer, and our results suggest that a similar trend exists in GBM. Furthermore, our results suggest that 5hmC is involved in the regulation of polycomb target genes in CSCs, including p16INK4A and components of the TGF-beta pathway. These findings implicate 5hmC in the maintenance of CSCs and regulation of EMT. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4027. doi:1538-7445.AM2012-4027
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 28, No. 9 ( 2022-05), p. 3110-3144
    Abstract: Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km 2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km 2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1281439-8
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Journal of Pediatric Endocrinology, Springer Science and Business Media LLC, Vol. 2016, No. 1 ( 2016-12)
    Type of Medium: Online Resource
    ISSN: 1687-9856
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2528691-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 12, No. 11_Supplement ( 2013-11-01), p. B12-B12
    Abstract: Development of resistance is a significant clinical problem for virtually all targeted cancer therapies. We have generated a reproducible, patient derived xenograft (PDX) model of acquired vemurafenib resistance to address these challenges. Continuous treatment of V600E melanoma tumors, caused synchronous tumor stasis for approximately 7 weeks, following which, all tumors displayed simultaneous resistance marked by rapid tumor growth. Additionally, this model maintains the resistance phenotype upon serial transplantation, providing a platform for testing rational drug selection. The fidelity of the PDX models was further confirmed using a BRAF V600V tumor which did not respond to vemurafenib. Onset of vemurafenib resistance is accompanied by increased phosphor-ERK signifying re-engagement of the MAPK signaling pathway and supporting MEK as a potential target. MEK inhibition in vemurafenib resistant tumors using PD0325901, resulted in rapid tumor shrinkage and dramatically reduced phosphor-ERK levels. Treatment of resistant tumors with PD0325901 alone, whilst leading to rapid tumor shrinkage, showed significant host toxicity and onset of acquired MEKi resistance. Interestingly, combination of vemurafenib + PD0325901 was non-toxic, and showed dramatic and sustained tumor suppression. Upon cessation of PD0325901 at 70 days the tumors remained undetectable for the duration of the study ( & gt;100 days). These data support the use of MEK inhibitors post-development of vemurafenib resistance and demonstrate that combination therapy mitigates systemic MEKi toxicity and results in persistent tumor inhibition/eradication. PDX models of acquired resistance provide a unique opportunity to bridge the gap between patients and the basic in vitro biology. Additionally, this PDX system allows the interrogation of the kinetics involved in the development of resistance by longitudinal tumor tissue sampling. Numerous mechanisms have been identified as potential causes of the resistance phenotype. Many have been identified in vitro but not all have been confirmed in patients. We detected no evidence of increased BRAF copy number or expression, although alternative BRAF splicing was identified in resistant tumors. Using differential gene expression accompanied by pathway and network analysis we identified distinct differences in the PDX tumors at various time points during the development of resistance. In particular, a potential role for interferon signaling in resistant tumors was observed. Furthermore, changes in the metabolic profiles were identified with untreated and resistant tumors favoring glycolytic pathways, whereas growth arrested tumors exhibited a preference for oxidative phosphorylation. In conclusion, these results demonstrate the value of PDX models for contributing to clinical cancer management through the decryption of complex drug resistance mechanisms and accelerating the identification of rationally selected drug combinations for bench to bedside applications. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):B12. Citation Format: Noel R. Monks, David J. Monsma, David M. Cherba, Emily Eugster, Dawna Dylewski, Mary E. Winn, Andrew S. Borgman, Paula J. Davidson, Chelsea A. Peterson, Jose M. Pimiento, Alexander E. Ivliev, Yuri Nikolsky, Marina Bessarabova, Valerie S. Calvert, Mariaelena Pierobon, Emanuel F. Petricoin, Craig P. Webb, Brian J. Nickoloff. Overcoming acquired resistance to vemurafenib using clinically relevant PDX models of melanoma. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr B12.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2062135-8
    detail.hit.zdb_id: 2063563-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Translational Medicine, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2012-12)
    Abstract: There is resurgence within drug and biomarker development communities for the use of primary tumorgraft models as improved predictors of patient tumor response to novel therapeutic strategies. Despite perceived advantages over cell line derived xenograft models, there is limited data comparing the genotype and phenotype of tumorgrafts to the donor patient tumor, limiting the determination of molecular relevance of the tumorgraft model. This report directly compares the genomic characteristics of patient tumors and the derived tumorgraft models, including gene expression, and oncogenic mutation status. Methods Fresh tumor tissues from 182 cancer patients were implanted subcutaneously into immune-compromised mice for the development of primary patient tumorgraft models. Histological assessment was performed on both patient tumors and the resulting tumorgraft models. Somatic mutations in key oncogenes and gene expression levels of resulting tumorgrafts were compared to the matched patient tumors using the OncoCarta (Sequenom, San Diego, CA) and human gene microarray (Affymetrix, Santa Clara, CA) platforms respectively. The genomic stability of the established tumorgrafts was assessed across serial in vivo generations in a representative subset of models. The genomes of patient tumors that formed tumorgrafts were compared to those that did not to identify the possible molecular basis to successful engraftment or rejection. Results Fresh tumor tissues from 182 cancer patients were implanted into immune-compromised mice with forty-nine tumorgraft models that have been successfully established, exhibiting strong histological and genomic fidelity to the originating patient tumors. Comparison of the transcriptomes and oncogenic mutations between the tumorgrafts and the matched patient tumors were found to be stable across four tumorgraft generations. Not only did the various tumors retain the differentiation pattern, but supporting stromal elements were preserved. Those genes down-regulated specifically in tumorgrafts were enriched in biological pathways involved in host immune response, consistent with the immune deficiency status of the host. Patient tumors that successfully formed tumorgrafts were enriched for cell signaling, cell cycle, and cytoskeleton pathways and exhibited evidence of reduced immunogenicity. Conclusions The preservation of the patient’s tumor genomic profile and tumor microenvironment supports the view that primary patient tumorgrafts provide a relevant model to support the translation of new therapeutic strategies and personalized medicine approaches in oncology.
    Type of Medium: Online Resource
    ISSN: 1479-5876
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2118570-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2002
    In:  Experimental Cell Research Vol. 275, No. 1 ( 2002-04), p. 81-91
    In: Experimental Cell Research, Elsevier BV, Vol. 275, No. 1 ( 2002-04), p. 81-91
    Type of Medium: Online Resource
    ISSN: 0014-4827
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 1493-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...