GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-7-5)
    Abstract: Cancer patients (CPs) have been identified as particularly vulnerable to SARS-CoV-2 infection, and therefore are a priority group for receiving COVID-19 vaccination. From the patients with advanced solid tumors, about 20% respond very efficiently to immunotherapy with anti-PD1/PD-L1 antibodies and achieve long lasting cancer responses. It is unclear whether an efficient cancer-specific immune response may also correlate with an efficient response upon COVID-19 vaccination. Here, we explored the antiviral immune response to the mRNA-based COVID-19 vaccine BNT162b2 in a group of 11 long-lasting cancer immunotherapy responders. We analysed the development of SARS-CoV-2-specific IgG serum antibodies, virus neutralizing capacities and T cell responses. Control groups included patients treated with adjuvant cancer immunotherapy (IMT, cohort B), CPs not treated with immunotherapy (no-IMT, cohort C) and healthy controls (cohort A). The median ELISA IgG titers significantly increased after the prime-boost COVID vaccine regimen in all cohorts (Cohort A: pre-vaccine = 900 (100-2700), 3 weeks (w) post-boost = 24300 (2700-72900); Cohort B: pre-vaccine = 300 (100-2700), 3 w post-boost = 8100 (300-72900); Cohort C: pre-vaccine = 500 (100-2700), 3 w post-boost = 24300 (300-72900)). However, at the 3 w post-prime time-point, only the healthy control group showed a statistically significant increase in antibody levels (Cohort A = 8100 (900-8100); Cohort B = 900 (300-8100); Cohort C = 900 (300-8100)) (P  & lt; 0.05). Strikingly, while all healthy controls generated high-level antibody responses after the complete prime-boost regimen (Cohort A = 15/15 (100%), not all CPs behaved alike [Cohort B= 12/14 (84'6%); Cohort C= 5/6 (83%)]. Their responses, including those of the long-lasting immunotherapy responders, were more variable (Cohort A: 3 w post-boost (median nAb titers = 95.32 (84.09-96.93), median Spike-specific IFN-γ response = 64 (24-150); Cohort B: 3 w post-boost (median nAb titers = 85.62 (8.22-97.19), median Spike-specific IFN-γ response (28 (1-372); Cohort C: 3 w post-boost (median nAb titers = 95.87 (11.8-97.3), median Spike-specific IFN-γ response = 67 (20-84)). Two long-lasting cancer responders did not respond properly to the prime-boost vaccination and did not generate S-specific IgGs, neutralizing antibodies or virus-specific T cells, although their cancer immune control persisted for years. Thus, although mRNA-based vacci nes can induce both antibody and T cell responses in CPs, the immune response to COVID vaccination is independent of the capacity to develop an efficient anti-cancer immune response to anti PD-1/PD-L1 antibodies.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 1106-1106
    Abstract: Background: ALK and ROS1 fusion-positive NSCLC patients derive clinical benefit from tyrosine kinase inhibitors (TKIs) but ultimately relapse. Acquired resistance mechanisms include on-target secondary mutations or copy number gains and activation of bypass signaling. Although MET amplification has been described as a bypass resistance mechanism to ALK and ROS1 inhibitors, there are limited data on MET gene and protein overexpression. Aims: (i) detection of MET alterations at the DNA, mRNA and protein levels in ALK and ROS1 fusion-positive NSCLC patients progressing on TKIs, and (ii) establishment of primary cultures using samples from those patients. Methods: MET alterations were studied in 12 patients after progression on TKIs, 10 ALK and 2 ROS1 fusion-positive. Informed consent was obtained from all patients. NGS and FISH were used to detect resistance mutations and amplifications. MET mRNA expression levels were determined by nCounter. Total and phospho-MET levels were assessed by IHC and Western blotting. Results: A total of 21 samples were available from the 12 patients, including tumor biopsies (n=5), plasma (n=10), pleural effusions (n=3) and cerebrospinal fluids (n=3). MET alterations were detected in 4 patients, 3 ALK fusion-positive progressing on lorlatinib and one ROS1 fusion-positive patient progressing on crizotinib. The 3 ALK fusion-positive patients had MET amplification detected in liquid biopsy (n=2) or tumor tissue (n=1), collected after progression on lorlatinib. In the patient with tissue biopsy available, the increased MET copy number was in line with the presence of MET protein and RNA overexpression. MET amplification was not present on the pre-treatment biopsy available for one of the 3 patients. In primary cultures established from pleural effusion samples of 2 ALK fusion-positive patients, MET amplification was maintained, particularly if the cells were cultured in presence of an ALK TKI. Although the ROS1 fusion-positive patient had no MET amplification after progression on crizotinib, MET and phospho-MET upregulation were detected by IHC. These alterations were also present in primary culture that could be established from a pleural effusion sample of the patient. Conclusions: We found MET alterations in 4 out of 12 (33%) fusion-positive patients after progression on TKIs. Three of them had MET amplification and one MET protein overexpression in the absence of MET copy number gain. Despite the small size of the cohort, our results suggest that testing not only at the DNA but also at the RNA and protein levels, discovers amplification-negative patients with MET alterations who may derive benefit from a MET targeted therapy. Finally, our findings highlight the potential of pleural effusion as a source of material for the establishment of primary cultures. Citation Format: Núria Jordana-Ariza, Nadine Reischmann, Carlos Esparré, Ruth Román, Cristina Aguado-Esteban, Silvia García-Román, Christopher Stroh, Andrés Aguilar Aguilar, Rafael Rosell, Niki Karachaliou, Miguel A. Molina-Vila. Detection of MET alterations at the DNA, RNA and protein levels in NSCLC patients progressing on ALK and ROS1 targeted therapies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1106.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...