GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 8, No. 18 ( 2022-05-06)
    Abstract: Negative effects of climate warming on pollinator diversity may be more severe in anthropogenic than in seminatural areas.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecology and Evolution, Wiley, Vol. 12, No. 10 ( 2022-10)
    Abstract: Dung beetles are important actors in the self‐regulation of ecosystems by driving nutrient cycling, bioturbation, and pest suppression. Urbanization and the sprawl of agricultural areas, however, destroy natural habitats and may threaten dung beetle diversity. In addition, climate change may cause shifts in geographical distribution and community composition. We used a space‐for‐time approach to test the effects of land use and climate on α‐diversity, local community specialization ( H 2 ′) on dung resources, and γ‐diversity of dung‐visiting beetles. For this, we used pitfall traps baited with four different dung types at 115 study sites, distributed over a spatial extent of 300 km × 300 km and 1000 m in elevation. Study sites were established in four local land‐use types: forests, grasslands, arable sites, and settlements, embedded in near‐natural, agricultural, or urban landscapes. Our results show that abundance and species density of dung‐visiting beetles were negatively affected by agricultural land use at both spatial scales, whereas γ‐diversity at the local scale was negatively affected by settlements and on a landscape scale equally by agricultural and urban land use. Increasing precipitation diminished dung‐visiting beetle abundance, and higher temperatures reduced community specialization on dung types and γ‐diversity. These results indicate that intensive land use and high temperatures may cause a loss in dung‐visiting beetle diversity and alter community networks. A decrease in dung‐visiting beetle diversity may disturb decomposition processes at both local and landscape scales and alter ecosystem functioning, which may lead to drastic ecological and economic damage.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecography, Wiley
    Abstract: Climate and land use are major determinants of biodiversity, and declines in species richness in cold and human exploited landscapes can be caused by lower rates of biotic interactions. Deadwood fungi and bacteria interact strongly with their hosts due to long‐lasting evolutionary trajectories. However, how rates of biotic interactions (specialization) change with temperature and land‐use intensity are unknown for both microbial groups. We hypothesize a decrease in species richness and specialization of communities with decreasing temperature and increasing land use intensity while controlling for precipitation. We used a full‐factorial nested design to disentangle land use at habitat and landscape scale and temperature spanning an area of 300 × 300 km in Germany. We exposed four deadwood objects representing the main tree species in Central Europe (beech, oak, spruce, pine) in 175 study plots. Overall, we found that fungal and bacterial richness, community composition and specialization were weakly related to temperature and land use. Fungal richness was slightly higher in near‐natural than in urban landscapes. Bacterial richness was positively associated with mean annual temperature, negatively associated with local temperature and highest in grassland habitats. Bacterial richness was positively related to the covariate mean annual precipitation. We found strong effects of host‐tree identity on species richness and community composition. A generally high level of fungal host‐tree specialization might explain the weak response to temperature and land use. Effects of host‐tree identity and specialization were more pronounced in fungi. We suggest that host tree changes caused by land use and climate change will be more important for fungal communities, while changes in climate will affect bacterial communities more directly. Contrasting responses of the two taxonomic groups suggest a reorganization of deadwood microbial communities, which might have further consequences on diversity and decomposition in the Anthropocene.
    Type of Medium: Online Resource
    ISSN: 0906-7590 , 1600-0587
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2024917-2
    detail.hit.zdb_id: 1112659-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 13, No. 19 ( 2021-10-05), p. 3982-
    Abstract: Contemporary climate change leads to earlier spring phenological events in Europe. In forests, in which overstory strongly regulates the microclimate beneath, it is not clear if further change equally shifts the timing of leaf unfolding for the over- and understory of main deciduous forest species, such as Fagus sylvatica L. (European beech). Furthermore, it is not known yet how this vertical phenological (mis)match—the phenological difference between overstory and understory—affects the remotely sensed satellite signal. To investigate this, we disentangled the start of season (SOS) of overstory F.sylvatica foliage from understory F. sylvatica foliage in forests, within nine quadrants of 5.8 × 5.8 km, stratified over a temperature gradient of 2.5 °C in Bavaria, southeast Germany, in the spring seasons of 2019 and 2020 using time lapse cameras and visual ground observations. We explained SOS dates and vertical phenological (mis)match by canopy temperature and compared these to Sentinel-2 derived SOS in response to canopy temperature. We found that overstory SOS advanced with higher mean April canopy temperature (visual ground observations: −2.86 days per °C; cameras: −2.57 days per °C). However, understory SOS was not significantly affected by canopy temperature. This led to an increase of vertical phenological mismatch with increased canopy temperature (visual ground observations: +3.90 days per °C; cameras: +2.52 days per °C). These results matched Sentinel-2-derived SOS responses, as pixels of higher canopy height advanced more by increased canopy temperature than pixels of lower canopy height. The results may indicate that, with further climate change, spring phenology of F. sylvatica overstory will advance more than F. sylvatica understory, leading to increased vertical phenological mismatch in temperate deciduous forests. This may have major ecological effects, but also methodological consequences for the field of remote sensing, as what the signal senses highly depends on the pixel mean canopy height and the vertical (mis)match.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Annals of Intensive Care, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-12)
    Abstract: The acute respiratory distress syndrome (ARDS) is a life-threatening condition. In special situations, these critically ill patients must be transferred to specialized centers for escalating treatment. The aim of this study was to evaluate the quality of inter-hospital transport (IHT) of ARDS patients. Methods We evaluated medical and organizational aspects of structural and procedural quality relating to IHT of patients with ARDS in a prospective nationwide ARDS study. The qualification of emergency staff, the organizational aspects and the occurrence of critical events during transport were analyzed. Results Out of 1234 ARDS patients, 431 (34.9%) were transported, and 52 of these (12.1%) treated with extracorporeal membrane oxygenation. 63.1% of transferred patients were male, median age was 54 years, and 26.8% of patients were obese. All patients were mechanically ventilated during IHT. Pressure-controlled ventilation was the preferred mode (92.1%). Median duration to organize the IHT was 165 min. Median distance for IHT was 58 km, and median duration of IHT 60 min. Forty-two patient-related and 8 technology-related critical events (11.6%, 50 of 431 patients) were observed. When a critical event occurred, the PaO 2 /FiO 2 ratio before transport was significant lower (68 vs. 80 mmHg, p  = 0.017). 69.8% of physicians and 86.7% of paramedics confirmed all transfer qualifications according to requirements of the German faculty guidelines (DIVI). Conclusions The transport of critically ill patients is associated with potential risks. In our study the rate of patient- and technology-related critical events was relatively low. A severe ARDS with a PaO 2 /FiO 2 ratio  〈  70 mmHg seems to be a risk factor for the appearance of critical events during IHT. The majority of transport staff was well qualified. Time span for organization of IHT was relatively short. ECMO is an option to transport patients with a severe ARDS safely to specialized centers. Trial registration NCT02637011 (ClinicalTrials.gov, Registered 15 December 2015, retrospectively registered)
    Type of Medium: Online Resource
    ISSN: 2110-5820
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2617094-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Annals of Intensive Care, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-12)
    Abstract: Acute respiratory distress syndrome (ARDS) is a life-threatening condition that often requires prolonged mechanical ventilation. Tracheostomy is a common procedure with some risks, on the other hand with potential advantages over orotracheal intubation in critically ill patients. This study investigated the association of tracheostomy with health-related quality of life (HRQoL), symptoms of psychiatric disorders and return-to-work of ARDS survivors. Methods Data were collected in the context of the prospective observational German-wide DACAPO study. Clinical and demographic patient data and treatment characteristics were obtained from the participating intensive care units (ICU). HRQoL and return-to-work were assessed using patient-reported questionnaires 3, 6 and 12 months after ICU discharge. HRQoL was measured with the Physical and Mental Component Scale of the Short-Form 12 Questionnaire (PCS-12, MCS-12). The prevalence of psychiatric symptoms (depression and post-traumatic stress disorder [PTSD]) was assessed using the Patient Health Questionnaire-9 and the Post-Traumatic Stress Syndrome-14. Physician-diagnosed anxiety and obsessive–compulsive disorder were recorded by patient self-report in the follow-up questionnaires. The associations of tracheostomy with HRQoL, psychiatric symptoms and return-to-work after 12 months were investigated by means of multivariable linear and logistic regression models. Results Primary 877 ARDS patients (mean ± standard deviation: 54 ± 16 years, 68% male) survived and were discharged from ICU. Out of these patients, 478 (54.5%) were tracheotomised during ICU treatment. After 12 months, patient-reported outcomes could be analysed of 388 (44.2%) respondents, 205 with tracheostomy and 183 without. One year after ICU discharge, tracheostomy showed no significant association with physical or mental health-related quality of life (PCS-12: − 0.73 [− 3.96, 2.51]; MCS-12: − 0.71 [− 4.92, 3.49] ), symptoms of psychiatric disorders (depression: 0.10 [− 1.43, 1.64]; PTSD: 3.31 [− 1.81, 8.43] ; anxiety: 1.26 [0.41, 3.86]; obsessive–compulsive disorder: 0.59 [0.05, 6.68] ) or return-to-work (0.71 [0.31, 1.64]) in the multivariable analysis (OR [95%-CI] ). Conclusions Up to 1 year after ICU discharge, neither HRQoL nor symptoms of psychiatric disorders nor return-to-work was affected by tracheostomy. Trial registration NCT02637011 (ClinicalTrials.gov, Registered 15 December 2015, retrospectively registered)
    Type of Medium: Online Resource
    ISSN: 2110-5820
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2617094-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Animals, MDPI AG, Vol. 12, No. 3 ( 2022-01-18), p. 222-
    Abstract: European roe deer (Capreolus capreolus L.) are important given their economic, recreational and ecological value. However, uncontrolled roe deer numbers can result in negative impacts on forest regeneration and agricultural crops, disease transmission and occurrences of deer-vehicle collisions. Information on the abundance and distribution is needed for effective management. We combined distance sampling (DS) of roe deer dung pellet groups with multiple variables to develop a density surface model (DSM) in the federal state of Bavaria in south-eastern Germany. We used the estimates of pellet group density as a proxy for roe deer relative abundance. We extrapolated our best DSM, conducted a quantitative evaluation and contrasted relative abundance along climate and land-use gradients. Relative abundance of roe deer was influenced by a combination of habitat type, climate and wildlife management variables, which differed between seasons and which reflected changes in food and shelter availability. At the landscape scale, the highest abundance was observed in agriculture-dominated areas and the lowest in urban areas. Higher abundance was also observed in areas with intermediate temperatures compared to the warmest areas. Our results provide information on possible future changes in the distribution of relative abundance due to changes in climate and land-use.
    Type of Medium: Online Resource
    ISSN: 2076-2615
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2606558-7
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Methods in Ecology and Evolution, Wiley, Vol. 13, No. 2 ( 2022-02), p. 514-527
    Abstract: Climate and land‐use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long‐term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi‐scale space‐for‐time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS‐based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land‐use types, that is, near‐natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land‐use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with | r  ≤ 0.33| and | r  ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land‐use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi‐scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long‐term ecological monitoring programs.
    Type of Medium: Online Resource
    ISSN: 2041-210X , 2041-210X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2528492-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Applied Ecology, Wiley, Vol. 60, No. 2 ( 2023-02), p. 365-375
    Abstract: Global warming can increase insect pest pressure by enhancing reproductive rates. Whether this translates into yield losses depends on phenological synchronisation of pests with their host plants and natural enemies. Simultaneously, landscape composition may mitigate climate effects by shaping the resource availability for pests and their antagonists. Here, we study the combined effects of temperature and landscape composition on pest abundances, larval parasitism, crop damage and yield, while also considering crop phenology, to identify strategies for sustainable management of oilseed rape (OSR) pests under warming climates. In all, 29 winter OSR crop fields were investigated in different climates (defined by multi‐annual mean temperature, MAT) and landscape contexts in Bavaria, Germany. We measured abundances of adult pollen beetles and stem weevil larvae, pollen beetle larval parasitism, bud loss, stem damage and seed yield, and calculated the flowering date from growth stage observations. Landscape parameters (proportion of non‐crop and OSR area, change in OSR area relative to the previous year) were calculated at six spatial scales (0.6–5 km). Pollen beetle abundance increased with MAT but to different degrees depending on the landscape context, that is, increased less strongly when OSR proportions were high (1‐km scale), interannually constant (5‐km scale) or both. In contrast, stem weevil abundance and stem damage did not respond to landscape composition nor MAT. Pollen beetle larval parasitism was overall low, but occasionally exceeded 30% under both low and high MAT and with reduced OSR area (0.6‐km scale). Despite high pollen beetle abundance in warm climates, yields were high when OSR flowered early. Thereby, higher temperatures favoured early flowering. Only among late‐flowering OSR crop fields yield was higher in cooler than warmer climates. Bud loss responded analogously. Landscape composition did not substantially affect bud loss and yield. Synthesis and applications : Earlier flowering of winter OSR compensates for higher pollen beetle abundance in warmer climates, while interannual continuity of OSR area prevents high pollen beetle abundance in the first place. Thus, regional coordination of crop rotation and crop management promoting early flowering may contribute to sustainable pest management in OSR under current and future climatic conditions.
    Type of Medium: Online Resource
    ISSN: 0021-8901 , 1365-2664
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2020408-5
    detail.hit.zdb_id: 410405-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 17, No. 4 ( 2022-4-29), p. e0264881-
    Abstract: Arthropod predators are important for ecosystem functioning by providing top-down regulation of insect herbivores. As predator communities and activity are influenced by biotic and abiotic factors on different spatial scales, the strength of top-down regulation (‘arthropod predation’) is also likely to vary. Understanding the combined effects of potential drivers on arthropod predation is urgently needed with regard to anthropogenic climate and land-use change. In a large-scale study, we recorded arthropod predation rates using artificial caterpillars on 113 plots of open herbaceous vegetation embedded in contrasting habitat types (forest, grassland, arable field, settlement) along climate and land-use gradients in Bavaria, Germany. As potential drivers we included habitat characteristics (habitat type, plant species richness, local mean temperature and mean relative humidity during artificial caterpillar exposure), landscape diversity (0.5–3.0-km, six scales), climate (multi-annual mean temperature, ‘MAT’) and interactive effects of habitat type with other drivers. We observed no substantial differences in arthropod predation rates between the studied habitat types, related to plant species richness and across the Bavarian-wide climatic gradient, but predation was limited when local mean temperatures were low and tended to decrease towards higher relative humidity. Arthropod predation rates increased towards more diverse landscapes at a 2-km scale. Interactive effects of habitat type with local weather conditions, plant species richness, landscape diversity and MAT were not observed. We conclude that landscape diversity favours high arthropod predation rates in open herbaceous vegetation independent of the dominant habitat in the vicinity. This finding may be harnessed to improve top-down control of herbivores, e.g. agricultural pests, but further research is needed for more specific recommendations on landscape management. The absence of MAT effects suggests that high predation rates may occur independent of moderate increases of MAT in the near future.
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2022
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...