GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2014
    In:  Geophysical Research Letters Vol. 41, No. 3 ( 2014-02-16), p. 866-872
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 41, No. 3 ( 2014-02-16), p. 866-872
    Abstract: Dynamic mass loss is mostly controlled by 〈 10% of fast‐flowing outlet glaciers Dynamic acceleration and thinning cause brief, asynchronous discharge increases Changes in surface mass balance not discharge will drive future sea level rise
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2014
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    International Glaciological Society ; 2013
    In:  Journal of Glaciology Vol. 59, No. 213 ( 2013), p. 67-75
    In: Journal of Glaciology, International Glaciological Society, Vol. 59, No. 213 ( 2013), p. 67-75
    Abstract: The rate of mass loss from the Greenland ice sheet has increased over the past decade due, in large part, to changes in marine-terminating outlet glacier dynamics. These changes are attributed to increased submarine melt rates of floating ice tongues and submerged calving faces resulting from increased coastal ocean heat transport. We use remotely sensed data to calculate submarine melt rates for 13 marine-terminating outlet glaciers in Greenland on a semi-annual basis between 2000 and 2010. We assess temporal and spatial variability in the calculated submarine melt rates and compare those variabilities to concurrent glacier change and offshore ocean temperatures. Over the period of study, average melt rates ranged from 0.03 to 2.98 m d −1 and account for 5–85% of the total volume loss from the floating ice tongue, with no clear spatial pattern. Only four glaciers show substantial interannual variability in melt rate during the decade. Melt rates were uncorrelated with front retreat, speed and changes in ocean temperature. Although the small sample size limits our analysis of the relationship between oceanographic forcing and glacier response, these data suggest that the calving rate may vary with discharge but that submarine melt rates are independent of grounding line discharge.
    Type of Medium: Online Resource
    ISSN: 0022-1430 , 1727-5652
    Language: English
    Publisher: International Glaciological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2140541-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2015
    In:  Geophysical Research Letters Vol. 42, No. 15 ( 2015-08-16), p. 6373-6381
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 42, No. 15 ( 2015-08-16), p. 6373-6381
    Abstract: New method to describe Greenland ice sheet freshwater forcing Simplicity enables application to various models and scenarios Model results show little impact on Atlantic meridional overturning
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing of Environment, Elsevier BV, Vol. 283 ( 2022-12), p. 113307-
    Type of Medium: Online Resource
    ISSN: 0034-4257
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1498713-2
    SSG: 11
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Cryosphere, Copernicus GmbH, Vol. 10, No. 5 ( 2016-09-06), p. 1933-1946
    Abstract: Abstract. We assess the recent contribution of the Greenland ice sheet (GrIS) to sea level change. We use the mass budget method, which quantifies ice sheet mass balance (MB) as the difference between surface mass balance (SMB) and solid ice discharge across the grounding line (D). A comparison with independent gravity change observations from GRACE shows good agreement for the overlapping period 2002–2015, giving confidence in the partitioning of recent GrIS mass changes. The estimated 1995 value of D and the 1958–1995 average value of SMB are similar at 411 and 418 Gt yr−1, respectively, suggesting that ice flow in the mid-1990s was well adjusted to the average annual mass input, reminiscent of an ice sheet in approximate balance. Starting in the early to mid-1990s, SMB decreased while D increased, leading to quasi-persistent negative MB. About 60 % of the associated mass loss since 1991 is caused by changes in SMB and the remainder by D. The decrease in SMB is fully driven by an increase in surface melt and subsequent meltwater runoff, which is slightly compensated by a small ( 〈  3 %) increase in snowfall. The excess runoff originates from low-lying ( 〈  2000 m a.s.l.) parts of the ice sheet; higher up, increased refreezing prevents runoff of meltwater from occurring, at the expense of increased firn temperatures and depleted pore space. With a 1991–2015 average annual mass loss of  ∼  0.47 ± 0.23 mm sea level equivalent (SLE) and a peak contribution of 1.2 mm SLE in 2012, the GrIS has recently become a major source of global mean sea level rise.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2018
    In:  Journal of Glaciology Vol. 64, No. 244 ( 2018-04), p. 175-184
    In: Journal of Glaciology, Cambridge University Press (CUP), Vol. 64, No. 244 ( 2018-04), p. 175-184
    Abstract: Accurate quantification of rates of glacier mass loss is critical for managing water resources and for assessing hazards at ice-clad volcanoes, especially in arid regions like southern Peru. In these regions, glacier and snow melt are crucial dry season water resources. In order to verify previously reported rates of ice area decline at Nevado Coropuna in Peru, which are anomalously rapid for tropical glaciers, we measured changes in ice cap area using 259 Landsat images acquired from 1980 to 2014. We find that Coropuna Ice Cap is presently the most extensive ice mass in the tropics, with an area of 44.1 km 2 , and has been shrinking at an average area loss rate of 0.409 km 2 a −1 (~0.71% a −1 ) since 1980. Our estimated rate of change is considerably lower than previous studies (1.4 km 2 a −1 or ~2.43% a −1 ), but is consistent with other tropical regions, such as the Cordillera Blanca located ~850 km to the NW (~0.68% a −1 ). Thus, if glacier recession continues at its present rate, our results suggest that Coropuna Ice Cap will likely continue to contribute to water supply for agricultural and domestic uses until ~2120, which is nearly 100 years longer than previously predicted.
    Type of Medium: Online Resource
    ISSN: 0022-1430 , 1727-5652
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2140541-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2021
    In:  Journal of Glaciology Vol. 67, No. 264 ( 2021-08), p. 744-758
    In: Journal of Glaciology, Cambridge University Press (CUP), Vol. 67, No. 264 ( 2021-08), p. 744-758
    Abstract: Glacier surges are periodic episodes of mass redistribution characterized by dramatic increases in ice flow velocity and, sometimes, terminus advance. We use optical satellite imagery to document five previously unexamined surge events of Sít’ Kusá (Turner Glacier) in the St. Elias Mountains of Alaska from 1983 to 2013. Surge events had an average recurrence interval of ~5 years, making it the shortest known regular recurrence interval in the world. Surge events appear to initiate in the winter, with speeds reaching up to ~25 m d −1 . The surges propagate down-glacier over ~2 years, resulting in maximum thinning of ~100 m in the reservoir zone and comparable thickening at the terminus. Collectively, the rapid recurrence interval, winter initiation and down-glacier propagation suggest Sít’ Kusá's surges are driven by periodic changes in subglacial hydrology and glacier sliding. Elevation change observations from the northern tributary show a kinematic disconnect above and below an icefall located 23 km from the terminus. We suggest the kinematic disconnect inhibits drawdown from the accumulation zone above the icefall, which leads to a steady flux of ice into the reservoir zone, and contributes to the glacier's exceptionally short recurrence interval.
    Type of Medium: Online Resource
    ISSN: 0022-1430 , 1727-5652
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2140541-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: The Cryosphere, Copernicus GmbH, Vol. 10, No. 2 ( 2016-04-26), p. 895-912
    Abstract: Abstract. In this study, we use satellite gravimetry data from the Gravity Recovery and Climate Experiment (GRACE) to estimate regional mass change of the Greenland ice sheet (GrIS) and neighboring glaciated regions using a least squares inversion approach. We also consider results from the input–output method (IOM). The IOM quantifies the difference between the mass input and output of the GrIS by studying the surface mass balance (SMB) and the ice discharge (D). We use the Regional Atmospheric Climate Model version 2.3 (RACMO2.3) to model the SMB and derive the ice discharge from 12 years of high-precision ice velocity and thickness surveys. We use a simulation model to quantify and correct for GRACE approximation errors in mass change between different subregions of the GrIS, and investigate the reliability of pre-1990s ice discharge estimates, which are based on the modeled runoff. We find that the difference between the IOM and our improved GRACE mass change estimates is reduced in terms of the long-term mass change when using a reference discharge derived from runoff estimates in several subareas. In most regions our GRACE and IOM solutions are consistent with other studies, but differences remain in the northwestern GrIS. We validate the GRACE mass balance in that region by considering several different GIA models and mass change estimates derived from data obtained by the Ice, Cloud and land Elevation Satellite (ICESat). We conclude that the approximated mass balance between GRACE and IOM is consistent in most GrIS regions. The difference in the northwest is likely due to underestimated uncertainties in the IOM solutions.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Copernicus GmbH ; 2023
    In:  The Cryosphere Vol. 17, No. 7 ( 2023-07-12), p. 2701-2704
    In: The Cryosphere, Copernicus GmbH, Vol. 17, No. 7 ( 2023-07-12), p. 2701-2704
    Abstract: Abstract. Vertical shear is recognized today as a key component of the stress balance of ice shelves. However, the first ice shelf models were built on the neglect of vertical shear. Partly due to its historical treatment, it remains common to discuss vertical shear as though it were still considered negligible in ice shelf models. Here, we offer a historical perspective on the changing treatment of vertical shear over time, and we emphasize the term's non-negligibility in current ice shelf modeling. We illustrate our discussion in the simplest context of an analytic, isothermal, shallow-ice-shelf model.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  GEM - International Journal on Geomathematics Vol. 14, No. 1 ( 2023-12)
    In: GEM - International Journal on Geomathematics, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2023-12)
    Type of Medium: Online Resource
    ISSN: 1869-2672 , 1869-2680
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2564274-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...