GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Research Ideas and Outcomes, Pensoft Publishers, Vol. 10 ( 2024-06-17)
    Abstract: Invasive alien species (IAS) threaten biodiversity and human well-being. These threats may increase in the future, necessitating accurate projections of potential locations and the extent of invasions. The main aim of the IAS prototype Digital Twin (IAS pDT) is to dynamically project the level of plant invasion at habitat level across Europe under current and future climates using joint species distribution models. The pDT detects updates in data sources and versions of the datasets and model outputs, implementing the FAIR principles. The pDT’s outputs will be available via an interactive dashboard. All input and output data will be freely accessible.
    Type of Medium: Online Resource
    ISSN: 2367-7163
    Language: Unknown
    Publisher: Pensoft Publishers
    Publication Date: 2024
    detail.hit.zdb_id: 2833254-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BJS Open, Oxford University Press (OUP), Vol. 6, No. 1 ( 2022-01-06)
    Abstract: Postoperative acute kidney injury (AKI) is a common complication of major gastrointestinal surgery with an impact on short- and long-term survival. No validated system for risk stratification exists for this patient group. This study aimed to validate externally a prognostic model for AKI after major gastrointestinal surgery in two multicentre cohort studies. Methods The Outcomes After Kidney injury in Surgery (OAKS) prognostic model was developed to predict risk of AKI in the 7 days after surgery using six routine datapoints (age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker). Validation was performed within two independent cohorts: a prospective multicentre, international study (‘IMAGINE’) of patients undergoing elective colorectal surgery (2018); and a retrospective regional cohort study (‘Tayside’) in major abdominal surgery (2011–2015). Multivariable logistic regression was used to predict risk of AKI, with multiple imputation used to account for data missing at random. Prognostic accuracy was assessed for patients at high risk (greater than 20 per cent) of postoperative AKI. Results In the validation cohorts, 12.9 per cent of patients (661 of 5106) in IMAGINE and 14.7 per cent (106 of 719 patients) in Tayside developed 7-day postoperative AKI. Using the OAKS model, 558 patients (9.6 per cent) were classified as high risk. Less than 10 per cent of patients classified as low-risk developed AKI in either cohort (negative predictive value greater than 0.9). Upon external validation, the OAKS model retained an area under the receiver operating characteristic (AUC) curve of range 0.655–0.681 (Tayside 95 per cent c.i. 0.596 to 0.714; IMAGINE 95 per cent c.i. 0.659 to 0.703), sensitivity values range 0.323–0.352 (IMAGINE 95 per cent c.i. 0.281 to 0.368; Tayside 95 per cent c.i. 0.253 to 0.461), and specificity range 0.881–0.890 (Tayside 95 per cent c.i. 0.853 to 0.905; IMAGINE 95 per cent c.i. 0.881 to 0.899). Conclusion The OAKS prognostic model can identify patients who are not at high risk of postoperative AKI after gastrointestinal surgery with high specificity. Presented to Association of Surgeons in Training (ASiT) International Conference 2018 (Edinburgh, UK), European Society of Coloproctology (ESCP) International Conference 2018 (Nice, France), SARS (Society of Academic and Research Surgery) 2020 (Virtual, UK).
    Type of Medium: Online Resource
    ISSN: 2474-9842
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2902033-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: British Journal of Surgery, Oxford University Press (OUP), Vol. 107, No. 5 ( 2020-03-18), p. 552-559
    Abstract: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function. Methods A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien–Dindo classification system. Results A total of 3288 patients were included in the analysis, of whom 301 (9·2 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4–7) and 7 (6–8) days respectively (P & lt; 0·001). There were no significant differences in rates of readmission between these groups (6·6 versus 8·0 per cent; P = 0·499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0·90, 95 per cent c.i. 0·55 to 1·46; P = 0·659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34·7 versus 39·5 per cent; major 3·3 versus 3·4 per cent; P = 0·110). Conclusion Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients.
    Type of Medium: Online Resource
    ISSN: 0007-1323 , 1365-2168
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2006309-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2016
    In:  Journal of Arid Environments Vol. 127 ( 2016-04), p. 211-221
    In: Journal of Arid Environments, Elsevier BV, Vol. 127 ( 2016-04), p. 211-221
    Type of Medium: Online Resource
    ISSN: 0140-1963
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 1468983-2
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Oikos, Wiley, Vol. 119, No. 8 ( 2010-02-26), p. 1326-1334
    Type of Medium: Online Resource
    ISSN: 0030-1299
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2009
    In:  Biodiversity and Conservation Vol. 18, No. 13 ( 2009-12), p. 3629-3641
    In: Biodiversity and Conservation, Springer Science and Business Media LLC, Vol. 18, No. 13 ( 2009-12), p. 3629-3641
    Type of Medium: Online Resource
    ISSN: 0960-3115 , 1572-9710
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2009
    detail.hit.zdb_id: 2000787-5
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ecography, Wiley, Vol. 41, No. 7 ( 2018-07), p. 1161-1172
    Abstract: Species distribution modelling (SDM) has become an essential method in ecology and conservation. In the absence of survey data, the majority of SDMs are calibrated with opportunistic presence‐only data, incurring substantial sampling bias. We address the challenge of correcting for sampling bias in the data‐sparse situations. We modelled the relative intensity of bat records in their entire range using three modelling algorithms under the point‐process modelling framework (GLMs with subset selection, GLMs fitted with an elastic‐net penalty, and Maxent). To correct for sampling bias, we applied model‐based bias correction by incorporating spatial information on site accessibility or sampling efforts. We evaluated the effect of bias correction on the models’ predictive performance (AUC and TSS), calculated on spatial‐block cross‐validation and a holdout data set. When evaluated with independent, but also sampling‐biased test data, correction for sampling bias led to improved predictions. The predictive performance of the three modelling algorithms was very similar. Elastic‐net models have intermediate performance, with slight advantage for GLMs on cross‐validation and Maxent on hold‐out evaluation. Model‐based bias correction is very useful in data‐sparse situations, where detailed data are not available to apply other bias correction methods. However, bias correction success depends on how well the selected bias variables describe the sources of bias. In this study, accessibility covariates described bias in our data better than the effort covariate, and their use led to larger changes in predictive performance. Objectively evaluating bias correction requires bias‐free presence–absence test data, and without them the real improvement for describing a species’ environmental niche cannot be assessed.
    Type of Medium: Online Resource
    ISSN: 0906-7590 , 1600-0587
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2024917-2
    detail.hit.zdb_id: 1112659-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Ecology and Evolution Vol. 8, No. 4 ( 2018-02), p. 2196-2206
    In: Ecology and Evolution, Wiley, Vol. 8, No. 4 ( 2018-02), p. 2196-2206
    Abstract: Species distribution modeling ( SDM ) is an essential method in ecology and conservation. SDM s are often calibrated within one country's borders, typically along a limited environmental gradient with biased and incomplete data, making the quality of these models questionable. In this study, we evaluated how adequate are national presence‐only data for calibrating regional SDM s. We trained SDM s for Egyptian bat species at two different scales: only within Egypt and at a species‐specific global extent. We used two modeling algorithms: Maxent and elastic net, both under the point‐process modeling framework. For each modeling algorithm, we measured the congruence of the predictions of global and regional models for Egypt, assuming that the lower the congruence, the lower the appropriateness of the Egyptian dataset to describe the species' niche. We inspected the effect of incorporating predictions from global models as additional predictor (“prior”) to regional models, and quantified the improvement in terms of AUC and the congruence between regional models run with and without priors. Moreover, we analyzed predictive performance improvements after correction for sampling bias at both scales. On average, predictions from global and regional models in Egypt only weakly concur. Collectively, the use of priors did not lead to much improvement: similar AUC and high congruence between regional models calibrated with and without priors. Correction for sampling bias led to higher model performance, whatever prior used, making the use of priors less pronounced. Under biased and incomplete sampling, the use of global bats data did not improve regional model performance. Without enough bias‐free regional data, we cannot objectively identify the actual improvement of regional models after incorporating information from the global niche. However, we still believe in great potential for global model predictions to guide future surveys and improve regional sampling in data‐poor regions.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 8 ( 2021-12-23)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 8 ( 2021-12-23)
    Abstract: Species distribution models (SDMs) relate species information to environmental conditions to predict potential species distributions. The majority of SDMs are static, relating species presence information to long-term average environmental conditions. The resulting temporal mismatch between species information and environmental conditions can increase model inference’s uncertainty. For SDMs to capture the dynamic species-environment relationships and predict near-real-time habitat suitability, species information needs to be spatiotemporally matched with environmental conditions contemporaneous to the species’ presence (dynamic SDMs). Implementing dynamic SDMs in the marine realm is highly challenging, particularly due to species and environmental data paucity and spatiotemporally biases. Here, we implemented presence-only dynamic SDMs for four migratory baleen whale species in the Southern Ocean (SO): Antarctic minke, Antarctic blue, fin, and humpback whales. Sightings were spatiotemporally matched with their respective daily environmental predictors. Background information was sampled daily to describe the dynamic environmental conditions in the highly dynamic SO. We corrected for spatial sampling bias by sampling background information respective to the seasonal research efforts. Independent model evaluation was performed on spatial and temporal cross-validation. We predicted the circumantarctic year-round habitat suitability of each species. Daily predictions were also summarized into bi-weekly and monthly habitat suitability. We identified important predictors and species suitability responses to environmental changes. Our results support the propitious use of dynamic SDMs to fill species information gaps and improve conservation planning strategies. Near-real-time predictions can be used for dynamic ocean management, e.g., to examine the overlap between habitat suitability and human activities. Nevertheless, the inevitable spatiotemporal biases in sighting data from the SO call for the need for improving sampling effort in the SO and using alternative data sources (e.g., passive acoustic monitoring) in future SDMs. We further discuss challenges of calibrating dynamic SDMs on baleen whale species in the SO, with a particular focus on spatiotemporal sampling bias issues and how background information should be sampled in presence-only dynamic SDMs. We also highlight the need to integrate visual and acoustic data in future SDMs on baleen whales for better coverage of environmental conditions suitable for the species and avoid constraints of using either data type alone.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  BMC Ecology Vol. 20, No. 1 ( 2020-12)
    In: BMC Ecology, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2020-12)
    Abstract: Spatial conservation prioritisation (SCP) is a set of computational tools designed to support the efficient spatial allocation of priority areas for conservation actions, but it is subject to many sources of uncertainty which should be accounted for during the prioritisation process. We quantified the sensitivity of an SCP application (using software Zonation) to possible sources of uncertainty in data-poor situations, including the use of different surrogate options; correction for sampling bias; how to integrate connectivity; the choice of species distribution modelling (SDM) algorithm; how cells are removed from the landscape; and two methods of assigning weights to species (red-list status or prediction uncertainty). Further, we evaluated the effectiveness of the Egyptian protected areas for conservation, and spatially allocated the top priority sites for further on-the-ground evaluation as potential areas for protected areas expansion. Results Focal taxon (butterflies, reptiles, and mammals), sampling bias, connectivity and the choice of SDM algorithm were the most sensitive parameters; collectively these reflect data quality issues. In contrast, cell removal rule and species weights contributed much less to overall variability. Using currently available species data, we found the current effectiveness of Egypt’s protected areas for conserving fauna was low. Conclusions For SCP to be useful, there is a lower limit on data quality, requiring data-poor countries to improve sampling strategies and data quality to obtain unbiased data for as many taxa as possible. Since our sensitivity analysis may not generalise, conservation planners should use sensitivity analyses more routinely, particularly relying on more than one combination of SDM algorithm and surrogate group, consider correction for sampling bias, and compare the spatial patterns of predicted priority sites using a variety of settings. The sensitivity of SCP to connectivity parameters means that the responses of each species to habitat loss are important knowledge gaps.
    Type of Medium: Online Resource
    ISSN: 1472-6785
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2050430-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...