GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Person/Organisation
Language
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 16 ( 2017), p. 167301-
    Abstract: In order to reduce the high electric field peak near the gate edge and optimize the non-uniform surface electric field distribution of conventional AlGaN/GaN high electron mobility transistor (HEMT), a novel AlGaN/GaN HEMT with a partial GaN cap layer is proposed in this paper. The partial GaN cap layer is introduced at the top of the AlGaN barrier layer and is located from the gate to the drain drift region. A negative polarization charge at the upper hetero-junction interface is induced, owing to the polarization effect at the GaN cap layer and AlGaN barrier layer interface. Hence, the two dimensional electron gas (2DEG) density is reduced. The low-density 2DEG region near the gate edge is formed, which turns the uniform distribution into a gradient distribution. The concentration distribution of 2DEG is modified. Therefore, the surface electric field distribution of AlGaN/GaN HEMT is modulated. By the electric field modulation effect, a new electric field peak is produced and the high electric field peak near the gate edge of the drain side is effectively reduced. The surface electric field of AlGaN/GaN HEMT is more uniformly redistributed in the drift region. In virtue of ISE-TCAD simulation software, the equipotential and the surface electric field distribution of AlGaN/GaN HEMT are obtained. For the novel AlGaN/GaN HEMT employing a partial GaN cap layer, the 2DEG is completely depleted from the gate to the drain electrodes, arising from the low-density 2DEG near the gate edge, while the 2DEG is partly depleted for the conventional AlGaN/GaN HEMT. The surface electric field distribution of the conventional structure is compared with the one of the novel structures with partial GaN cap layers of different lengths at a fixed thickness of 228 nm. With increasing length, the new electric field peak increases and shifts toward the drain electrode, and the high electric field peak on the drain side of the gate edge is reduced. Moreover, the breakdown voltage dependence on the length and thickness of the partial GaN cap layer is achieved. The simulation results exhibit that the breakdown voltage can be improved to 960 V compared with 427 V of the conventional AlGaN/GaN HEMT under the optimum conditions. The threshold voltage of AlGaN/GaN HEMT remains unchanged. The maximum output current of AlGaN/GaN HEMT is reduced by 9.2% and the specific on-resistance is increased by 11% due to a 2DEG density reduction. The cut-off frequency keeps constant and the maximum oscillation frequency shows an improvement of 12% resulting from the increased output resistance. The results demonstrate that the proposed AlGaN/GaN HEMT is an attractive candidate in realizing the high-voltage operation of GaN-based power device.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2014
    In:  Acta Physica Sinica Vol. 63, No. 22 ( 2014), p. 227302-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 63, No. 22 ( 2014), p. 227302-
    Abstract: In this paper, a new REBULF (reduced BULk field) SJ-LDMOS (lateral double-diffused MOSFET) is proposed with the N type buffered layer based on the buffered SJ-LDMOS for the low loss of LDMOS used in the power integrated circuits. In this structure, the problem of the substrate-assisted depletion, produced due to the P-type substrate for the N-channel SJ-LDMOS, is eliminated by the N-type buffered layer. The charges for the N-type and P-type pillars are depleted completely. Moreover, a new electric field peak is introduced into the surface electric field distribution, which makes the lateral surface electric field uniform. The breakdown voltage is improved for the REBULF SJ-LDMOS in virtue of the ISE simulation results. By optimizing the location and parameters of the N-type buried layer, the breakdown voltage of REBULF SJ-LDMOS is increased by about 49% compared with that of the conventional LDMOS, and improved by about 30% compared with that of the buffered SJ-LDMOS.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2014
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 16 ( 2015), p. 167304-
    Abstract: In order to design the lateral double-diffused metal-oxide-semiconductor field-effect transistor (LDMOS) with low loss required for a power integrated circuit, a new super junction LDMOS with the P covered layer which is based on the existing N buffered super junction LDMOS is proposed in this paper for the first time. The key feature of the proposed structure is that the P-type covered layer is partly above the N-type of the super junction layer, which is different from the N buffered super junction LDMOS. In this structure, the specific on-resistance of the device is reduced by using the high doped super junction layer; the problem of the substrate-assisted depletion which is produced due to the P-type substrate of the N-channel super junction LDMOS is eliminated by completely compensating for the charges of the N-type buffered layer and the P-type covered layer, thus improving the breakdown voltage. The charges of the N-type and P-type pillars are depleted completely. A new transmission path at the on-state is formed by N buffered layer to reduce the specific on-resistance, which is similar to the N buffered super junction LDMOS. However, the effect of N-type buffered layer of N buffered super junction LDMOS is not fully used. The drift region of the device is further optimized by the proposed device to reduce the specific on-resistance. The charge concentration of the N-type buffered layer in the proposed device is improved by the effect of charge compensation of the P covered layer. It is clear that high breakdown voltage and low specific on-resistance are realized in the proposed device by introducing the P-type covered layer and the N-type buffered layer. The results of the 3 D-ISE software suggest that when the drift region is on a scale of 10 μm, a specific on-resistance of 4.26 mΩ·cm2 obtained from P covered super junction LDMOS by introducing P covered layer and N buffered layer is reduced by about 59% compared with that of conventional super junction LDMOS which is 10.47 mΩ·cm2, and reduced by about 43% compared with that of N Buffered super junction LDMOS which is 7.46 mΩ·cm2.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 14 ( 2021), p. 148501-
    Abstract: With the rapid development of the traditional inorganic semiconductor industry, the improvement of its electrical performance is gradually approaching to the limit. It is difficult to continue to improve the performance, lessen the size, and reduce the cost. Therefore, organic semiconductor materials and devices with simple process and low cost have been found and gradually become a new research hotspot. Although organic semiconductor materials and devices are developing rapidly, their electrical properties, such as carrier mobility, are considerably inferior to those of inorganic semiconductors, and their research direction and application prospect are relatively fixed and single. They are developed only in display, sensing, photoelectric conversion and other fields, but the researches on switching power devices, integrated circuits and other fields are still relatively blank. At the same time, power devices are used only in the field of inorganic semiconductors. Therefore, in order to expand the research direction of organic semiconductors and power devices at the same time, a novelsilicon on insulator lateral double-diffused metal oxide semiconductor (SOI LDMOS)power device is reported in this paper. Unlike the SOI LDMOS power devices in traditional inorganic semiconductors, this novel device can be used in the field of organic semiconductors by combining with insulated flexible substrates, which provides a new possibility for the research direction of organic semiconductors. In this paper, both simulation and experiment verify that specific on-resistance (〈i〉R〈/i〉〈sub〉ON,sp〈/sub〉) and threshold voltage (〈i〉V〈/i〉〈sub〉TH〈/sub〉) do not change significantly when the conventional SOI LDMOS lacks the substrate electrode, but the breakdown voltage decreases by about 15% due to the absence of the substrate electrode or the longitudinal electric field. In response to this phenomenon, in this paper proposed is a novel SOI LDMOS power device that possesses surface substrate electrodes and drift zone oxide trenches. This novel device can provide electrodes for the substrate again, optimize the horizontal and vertical electric field, and significantly change neither of the 〈i〉R〈/i〉〈sub〉ON,sp〈/sub〉 and the 〈i〉V〈/i〉〈sub〉TH〈/sub〉. At the same time, the breakdown voltage (BV) of conventional SOI LDMOS is increased by 57.54%, which alleviates the adverse effects caused by the application in the field of organic semiconductors. This novel SOI LDMOS power device provides the possibility of applying traditional power semiconductors to the research of organic semiconductors, and has innovative significance for expanding the organic semiconductor research.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 61, No. 24 ( 2012), p. 247302-
    Abstract: In order to optimize the surface electric field of the traditional AlGaN/GaN high electron mobility transistor and improve the breakdown voltage and reliability, a new AlGaN/GaN high electron mobility transistor is proposed with the partial fixed positive charges in the Si3N4 passivation layer in this paper. The partial fixed positive charges of the Si3N4 passivation layer do not affect the polarization effect of the AlGaN/GaN heterojunction. The surface electric field tends to the uniform distribution due to the new electric field peak formed by the partial fixed positive charges, which modulates the surface electric field by applying the electric field modulation effect. The high electric fields near the gate and drain electrode decrease due to the new electric field peak. The breakdown voltage is improved from the 296V for the traditional structure to the 650V for the new structure proposed. The reliability of the device is improved due to the uniform surface electric field. The effect of the electric field modulation is explained by the horizontal and vertical electric field distribution between the Si3N4 and AlGaN interface, which provides a scientific basis for designing the new structure with the partial fixed positive charges in the Si3N4 layer. Because of the fixed positive charge compensation, the two-dimensional electron gas concentration increases, and the on-resistance decreases. So, the output current of the new structure increases compared with that of the traditional AlGaN/GaN High Electron Mobility Transistor.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Physical Society (APS) ; 2000
    In:  Physical Review B Vol. 61, No. 3 ( 2000-1-15), p. 1685-1687
    In: Physical Review B, American Physical Society (APS), Vol. 61, No. 3 ( 2000-1-15), p. 1685-1687
    Type of Medium: Online Resource
    ISSN: 0163-1829 , 1095-3795
    RVK:
    Language: English
    Publisher: American Physical Society (APS)
    Publication Date: 2000
    detail.hit.zdb_id: 2844160-6
    detail.hit.zdb_id: 209770-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2012
    In:  Applied Mechanics and Materials Vol. 271-272 ( 2012-12), p. 21-25
    In: Applied Mechanics and Materials, Trans Tech Publications, Ltd., Vol. 271-272 ( 2012-12), p. 21-25
    Abstract: A novel 4H-SiC MESFET with stepped-channel (stepped-spacer) structure is proposed for the first time and analyzed by 2D numerical simulation. Based on the stepped buried oxide structure of SOI which can produce additional electrical Electric field peaks, much more advantages can be obtained through a stepped-channel structure compared to that of the field terminal technology, such as an obvious increase of the breakdown voltage which is equal to the electric field to the path integral, and the lower capacitances lead to a higher cut-off frequency. The simulation results show that a 100% higher saturated drain current and a 153% larger breakdown voltage can be obtained utilizing the stepped-channel structure MESFET than those of the conventional counterpart.
    Type of Medium: Online Resource
    ISSN: 1662-7482
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2012
    detail.hit.zdb_id: 2251882-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    IOP Publishing ; 2007
    In:  Chinese Physics Letters Vol. 24, No. 5 ( 2007-05), p. 1342-1345
    In: Chinese Physics Letters, IOP Publishing, Vol. 24, No. 5 ( 2007-05), p. 1342-1345
    Type of Medium: Online Resource
    ISSN: 0256-307X , 1741-3540
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2007
    detail.hit.zdb_id: 2040565-0
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    IOP Publishing ; 2019
    In:  Chinese Physics B Vol. 28, No. 2 ( 2019-02), p. 027302-
    In: Chinese Physics B, IOP Publishing, Vol. 28, No. 2 ( 2019-02), p. 027302-
    Type of Medium: Online Resource
    ISSN: 1674-1056 , 2058-3834
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2412147-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Chinese Physics B, IOP Publishing, Vol. 21, No. 1 ( 2012-01), p. 017201-
    Type of Medium: Online Resource
    ISSN: 1674-1056
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 2412147-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...