GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Journal of Low Temperature Physics Vol. 193, No. 5-6 ( 2018-12), p. 916-922
    In: Journal of Low Temperature Physics, Springer Science and Business Media LLC, Vol. 193, No. 5-6 ( 2018-12), p. 916-922
    Type of Medium: Online Resource
    ISSN: 0022-2291 , 1573-7357
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2016984-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 642 ( 2020-10), p. A126-
    Abstract: High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel’dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system ( M 500  ∼ 2 × 10 14   M ⊙ ) at z  = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∼ r 500 , and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z  ∼ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid .
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 671 ( 2023-03), p. A28-
    Abstract: The precise estimation of the mass of galaxy clusters is a major issue for cosmology. Large galaxy cluster surveys rely on scaling laws that relate cluster observables to their masses. From the high-resolution observations of ∼45 galaxy clusters with the NIKA2 and XMM-Newton instruments, the NIKA2 Sunyaev-Zel’dovich Large Program should provide an accurate scaling relation between the thermal Sunyaev-Zel’dovich effect and the hydrostatic mass. In this paper we present an exhaustive analysis of the hydrostatic mass of the well-known galaxy cluster CL J1226.9+3332, the highest-redshift cluster in the NIKA2 Sunyaev-Zel’dovich Large Program at z  = 0.89. We combined the NIKA2 observations with thermal Sunyaev-Zel’dovich data from the NIKA, Bolocam, and MUSTANG instruments and XMM-Newton X-ray observations, and tested the impact of the systematic effects on the mass reconstruction. We conclude that slight differences in the shape of the mass profile can be crucial when defining the integrated mass at R 500 , which demonstrates the importance of the modelling in the mass determination. We prove the robustness of our hydrostatic mass estimates by showing the agreement with all the results found in the literature. Another key factor for cosmology is the bias of the masses estimated assuming the hydrostatic equilibrium hypothesis. Based on the lensing convergence maps from the Cluster Lensing And Supernova survey with Hubble (CLASH) data, we obtain the lensing mass estimate for CL J1226.9+3332. From this we are able to measure the hydrostatic-to-lensing mass bias for this cluster, which spans from 1 −  b HSE/lens  ∼ 0.7 to 1, presenting the impact of data sets and mass reconstruction models on the bias.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: EPJ Web of Conferences, EDP Sciences, Vol. 257 ( 2022), p. 00038-
    Abstract: The NIKA2 Guaranteed-Time SZ Large Program (LPSZ) is dedicated to the high-angular resolution SZ mapping of a representative sample of 45 SZ-selected galaxy clusters drawn from the catalogues of the Planck satellite, or of the Atacama Cosmology Telescope. The LPSZ sample spans a mass range from 3 to 11 × 10 14 M ⊙ and a redshift range from 0:5 to 0:9, extending to higher redshift and lower mass the previous samples dedicated to the cluster mass calibration and universal properties estimation. The main goals of the LPSZ are the measurement of the average radial profile of the ICM pressure up to R 500 by combining NIKA2 with Planck or ACT data, and the estimation of the scaling law between the SZ observable and the mass using NIKA2, XMM-Newton and Planck/ACT data. Furthermore, combining LPSZ data with existing or forthcoming public data in lensing, optical/NIR or radio domains, we will build a consistent picture of the cluster physics and further gain knowledge on the mass estimate as a function of the cluster morphology and dynamical state. We give an overview of the LPSZ, present recent results and discuss the future implication for cosmology with galaxy clusters.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: EPJ Web of Conferences, EDP Sciences, Vol. 257 ( 2022), p. 00003-
    Abstract: PSZ2 G091.83+26.11 is a massive galaxy cluster with M 500 = 7:43 × 10 14 M ⊙ at z = 0:822. This object exhibits a complex morphology with a clear bimodality observed in X-rays. However, it was detected and analysed in the Planck sample as a single, spherical cluster following a universal profile [1]. This model can lead to miscalculations of thermodynamical quantities, like the pressure profile. As future multiwavelength cluster experiments will detect more and more objects at higher redshifts (where we expect the fraction of merging objects to be higher), it is crucial to quantify this systematic effect. In this work, we use high-resolution observations of PSZ2 G091.83+26.11 by the NIKA2 camera to integrate the morphological characteristics of the cluster in our modelling. This is achieved by fitting a two-halo model to the SZ image and then by reconstruction of the resulting projected pressure profile. We then compare these results with the spherical assumption.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: EPJ Web of Conferences, EDP Sciences, Vol. 257 ( 2022), p. 00032-
    Abstract: We present a multi-probe analysis of the well-known galaxy cluster CL J1226.9+3332 as a proof of concept for multi-wavelength studies within the framework of the NIKA2 Sunyaev-Zel’dovich Large Program (LPSZ). CL J1226.9+3332 is a massive and high redshift (z = 0.888) cluster that has already been observed at several wavelengths. A joint analysis of the thermal SZ (tSZ) effect at millimeter wavelength with the NIKA2 camera and in X-ray with the XMM-Newton satellite permits the reconstruction of the cluster’s thermodynamical properties and mass assuming hydrostatic equilibrium. We test the robustness of our mass estimates against different definitions of the data analysis transfer function. Using convergence maps reconstructed from the data of the CLASH program we obtain estimates of the lensing mass, which we compare to the estimated hydrostatic mass. This allows us to measure the hydrostatic-to-lensing mass bias and the associated systematic effects related to the NIKA2 measurement. We obtain M 500 HSE = (7:65 ± 1:03) × 10 14 M ⊙ and M 500 lens = (7:35 ± 0:65) × 10 14 M ⊙ , which implies a HSE-to-lensing bias consistent with 0 within 20%.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: EPJ Web of Conferences, EDP Sciences, Vol. 257 ( 2022), p. 00033-
    Abstract: Starting from the clusters included in the NIKA sample and in the NIKA2 Sunyaev-Zel’dovich Large Program (LPSZ) we have selected a sample of six common objects with the Cluster Lensing And Supernova survey with Hubble (CLASH) lensing data. For the LPSZ clusters we have at our disposal both high-angular resolution observations of the thermal SZ with NIKA and NIKA2 and X-ray observations with XMM-Newton from which hydrostatic mass estimates can be derived. In addition, the CLASH dataset includes lensing convergence maps that can be converted into lensing estimates of the total mass of the cluster. One-dimensional mass profiles are used to derive integrated mass estimates accounting for systematic effects (data processing, modeling, etc.). Two-dimensional analysis of the maps can reveal substructures in the cluster and, therefore, inform us about the dynamical state of each system. Moreover, we are able to study the hydrostatic mass to lensing mass bias, across different morphology and a range of redshift clusters to give more insight on the hydrostatic mass bias. The analysis presented in this proceeding follows the study discussed in [20].
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 677 ( 2023-9), p. A66-
    Abstract: Context. Finding and characterizing the heavily obscured galaxies with extreme star formation up to very high redshift is key for constraining the formation of the most massive galaxies in the early Universe. It has been shown that these obscured galaxies are major contributors to the accumulation of stellar mass to z ~ 4. At higher redshift, and despite recent progress, the contribution of dust-obscured galaxies remains poorly known. Aims. Deep surveys in the millimeter domain are necessary in order to probe the dust-obscured galaxies at high redshift. We conducted a large observing program at 1.2 and 2 mm with the NIKA2 camera installed on the IRAM 30m telescope. This NIKA2 Cosmological Legacy Survey (N2CLS) covers two emblematic fields: GOODS-N and COSMOS. We introduce the N2CLS survey and present new 1.2 and 2 mm number counts measurements based on the tiered N2CLS observations (from October 2017 to May 2021) covering 1169 arcmin 2 . Methods. After a careful data reduction and source extraction, we develop an end-to-end simulation that combines an input sky model with the instrument noise and data reduction pipeline artifacts. This simulation is used to compute the sample purity, flux boosting, pipeline transfer function, completeness, and effective area of the survey (taking into account the non-homogeneous sky coverage). For the input sky model, we used the 117 square degree SIDES simulations, which include galaxy clustering. Our formalism allows us to correct the source number counts to obtain galaxy number counts, the difference between the two being due to resolution effects caused by the blending of several galaxies inside the large beam of single-dish instruments. Results. The N2CLS-May2021 survey is already the deepest and largest ever made at 1.2 and 2 mm. It reaches an average 1 σ - noise level of 0.17 and 0.048 mJy on GOODS-N over 159 arcmin 2 , and 0.46 and 0.14 mJy on COSMOS over 1010 arcmin 2 , at 1.2 and 2 mm, respectively. For a purity threshold of 80%, we detect 120 and 67 sources in GOODS-N and 195 and 76 sources in COSMOS at 1.2 and 2 mm, respectively. At 1.2 mm, the number counts measurement probes consistently 1.5 orders of magnitude in flux density, covering the full flux density range from previous single-dish surveys and going a factor of 2 deeper into the sub-mJy regime. Our measurement connects the bright single-dish to the deep interferometric number counts. At 2 mm, our measurement matches the depth of the deepest interferometric number counts and extends a factor of 2 above the brightest constraints. After correcting for resolution effects, our results reconcile the single-dish and interferometric number counts, which can be further accurately compared with model predictions. Conclusions. While the observation in GOODS-N have already reached the target depth, we expect the final N2CLS survey to be 1.5 times deeper for COSMOS. Thanks to its volume-complete flux selection, the final N2CLS sample will be an ideal reference for conducting a full characterization of dust-obscured galaxies at high redshift.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: EPJ Web of Conferences, EDP Sciences, Vol. 257 ( 2022), p. 00002-
    Abstract: Dust polarization observations are a powerful, practical tool to probe the geometry (and to some extent, the strength) of magnetic fields in starforming regions. In particular, Planck polarization data have revealed the importance of magnetic fields on large scales in molecular clouds. However, due to insufficient resolution, Planck observations are unable to constrain the B-field geometry on prestellar and protostellar scales. The high angular resolution of 11.7 arcsec provided by NIKA2-Pol 1.15 mm polarimetric imaging, corresponding to 0.02 pc at the distance of the Orion molecular cloud (OMC), makes it possible to advance our understanding of the B-field morphology in star-forming filaments and dense cores (IRAM 30m large program B-FUN). The commissioning of the NIKA2-Pol instrument has led to several challenging issues, in particular, the instrumental polarization or intensity-to-polarization “leakage” effect. In the present paper, we illustrate how this effect can be corrected for, leading to reliable exploitable data in a structured, extended source such as OMC-1. We present a statistical comparison between NIKA2-Pol and SCUBA2-Pol2 results in the OMC-1 region. We also present tentative evidence of local pinching of the B-field lines near Orion-KL, in the form of a new small-scale hourglass pattern, in addition to the larger-scale hourglass already seen by other instruments such as Pol2.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: EPJ Web of Conferences, EDP Sciences, Vol. 257 ( 2022), p. 00037-
    Abstract: In the past decade filaments have been recognised as a major structural element of the interstellar medium, the densest of these filaments hosting the formation of most stars. In some star-forming molecular clouds converging networks of filaments, also known as hub filament systems, can be found. These hubs are believed to be preferentially associated to massive star formation. As of today, there are no metrics that allow the systematic quantification of a filament network convergence. Here, we used the IRAM 30m NIKA2 observations of the Galactic plane from the GASTON large programme to systematically identify filaments and produce a filament convergence parameter map. We use such a map to show that: i. hub filaments represent a small fraction of the global filament population; ii. hubs host, in proportion, more massive and more luminous compact sources that non-hubs; iii. hub-hosting clumps are more evolved that non-hubs; iv. no discontinuities are observed in the properties of compact sources as a function of convergence parameter. We propose that the rapid global collapse of clumps is responsible for (re)organising filament networks into hubs and, in parallel, enhancing the mass growth of compact sources.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 2595425-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...