GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    AME Publishing Company ; 2020
    In:  Annals of Translational Medicine Vol. 8, No. 6 ( 2020-3), p. 283-283
    In: Annals of Translational Medicine, AME Publishing Company, Vol. 8, No. 6 ( 2020-3), p. 283-283
    Type of Medium: Online Resource
    ISSN: 2305-5839 , 2305-5847
    Language: Unknown
    Publisher: AME Publishing Company
    Publication Date: 2020
    detail.hit.zdb_id: 2893931-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Neuroinflammation, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2021-12)
    Abstract: Complex changes in the brain microenvironment following traumatic brain injury (TBI) can cause neurological impairments for which there are few efficacious therapeutic interventions. The reactivity of astrocytes is one of the keys to microenvironmental changes, such as neuroinflammation, but its role and the molecular mechanisms that underpin it remain unclear. Methods Male C57BL/6J mice were subjected to the controlled cortical impact (CCI) to develop a TBI model. The specific ligand of AXL receptor tyrosine kinase (AXL), recombinant mouse growth arrest-specific 6 (rmGas6) was intracerebroventricularly administered, and selective AXL antagonist R428 was intraperitoneally applied at 30 min post-modeling separately. Post-TBI assessments included neurobehavioral assessments, transmission electron microscopy, immunohistochemistry, and western blotting. Real-time polymerase chain reaction (RT-PCR), siRNA transfection, and flow cytometry were performed for mechanism assessments in primary cultured astrocytes. Results AXL is upregulated mainly in astrocytes after TBI and promotes astrocytes switching to a phenotype that exhibits the capability of ingesting degenerated neurons or debris. As a result, this astrocytic transformation promotes the limitation of neuroinflammation and recovery of neurological dysfunction. Pharmacological inhibition of AXL in astrocytes significantly decreased astrocytic phagocytosis both in vivo and in primary astrocyte cultures, in contrast to the effect of treatment with the rmGas6. AXL activates the signal transducer and activator of the transcription 1 (STAT1) pathway thereby further upregulating ATP-binding cassette transporter 1 (ABCA1). Moreover, the supernatant from GAS6-depleted BV2 cells induced limited enhancement of astrocytic phagocytosis in vitro. Conclusion Our work establishes the role of AXL in the transformation of astrocytes to a phagocytic phenotype via the AXL/STAT1/ABCA1 pathway which contributes to the separation of healthy brain tissue from injury-induced cell debris, further ameliorating neuroinflammation and neurological impairments after TBI. Collectively, our findings provide a potential therapeutic target for TBI.
    Type of Medium: Online Resource
    ISSN: 1742-2094
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2156455-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: ACS Sensors, American Chemical Society (ACS), Vol. 6, No. 9 ( 2021-09-24), p. 3330-3339
    Type of Medium: Online Resource
    ISSN: 2379-3694 , 2379-3694
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 2021
    detail.hit.zdb_id: 2843497-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-8-12)
    Abstract: Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Oncology Vol. 11 ( 2021-2-22)
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 11 ( 2021-2-22)
    Abstract: Glioblastoma (GBM), one of the deadliest primary brain malignancies, is characterized by a high recurrence rate due to its limited response to existing therapeutic strategies such as chemotherapy, radiation therapy, and surgery. Several mechanisms and pathways have been identified to be responsible for GBM therapeutic resistance. Glioblastoma stem cells (GSCs) are known culprits of GBM resistance to therapy. GSCs are characterized by their unique self-renewal, differentiating capacity, and proliferative potential. They form a heterogeneous population of cancer stem cells within the tumor and are further divided into different subpopulations. Their distinct molecular, genetic, dynamic, and metabolic features distinguish them from neural stem cells (NSCs) and differentiated GBM cells. Novel therapeutic strategies targeting GSCs could effectively reduce the tumor-initiating potential, hence, a thorough understanding of mechanisms involved in maintaining GSCs’ stemness cannot be overemphasized. The mitochondrion, a regulator of cellular physiological processes such as autophagy, cellular respiration, reactive oxygen species (ROS) generation, apoptosis, DNA repair, and cell cycle control, has been implicated in various malignancies (for instance, breast, lung, and prostate cancer). Besides, the role of mitochondria in GBM has been extensively studied. For example, when stressors, such as irradiation and hypoxia are present, GSCs utilize specific cytoprotective mechanisms like the activation of mitochondrial stress pathways to survive the harsh environment. Proliferating GBM cells exhibit increased cytoplasmic glycolysis in comparison to terminally differentiated GBM cells and quiescent GSCs that rely more on oxidative phosphorylation (OXPHOS). Furthermore, the Warburg effect, which is characterized by increased tumor cell glycolysis and decreased mitochondrial metabolism in the presence of oxygen, has been observed in GBM. Herein, we highlight the importance of mitochondria in the maintenance of GSCs.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-3-11), p. 1-18
    Abstract: The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both in vitro and in vivo experiments showed that Omav treatment inhibited M1-like activation and promoted the activation of the M2-like microglial phenotype. Omav inhibited OxyHb-induced ROS generation and preserved the function of mitochondria in BV2 cells. Intraperitoneal administration of Omav improved sensorimotor function in the ICH mouse model. Importantly, these effects were blocked by pretreatment with ML385, a selective inhibitor of Nrf2. Collectively, Omav modulated microglial polarization by activating Nrf2 and inhibiting ROS generation in ICH models, suggesting that it might be a promising drug candidate for the treatment of ICH.
    Type of Medium: Online Resource
    ISSN: 1942-0994 , 1942-0900
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2455981-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 12 ( 2021-3-17)
    Abstract: Objective: Pediatric diffuse gliomas (pDGs) are relatively rare and molecularly distinct from pediatric pilocytic astrocytoma and adult DGs. Immunotherapy is a promising therapeutic strategy, requiring a deep understanding of tumor immune profiles. The spatial locations of brain tumors might be related to the molecular profiles. We aimed to analyze the relationship between the immune checkpoint molecules with the locations of DGs comparing pediatric with adult patients. Method: We studied 20 pDGs patients (age ≤ 21 years old), and 20 paired adult patients according to gender and histological types selected from 641 adult patients with DGs. Immune checkpoint molecules including B7-H3, CD47, and PD-L1, as well as tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs), were manifested by immunohistochemical staining. Expression difference analyses and Spearman's correlation were performed. MRI data were voxel-wise normalized, segmented, and analyzed by Fisher's exact test to construct the tumor frequency and p value heatmaps. Survival analyses were conducted by Log-rank tests. Result: The median age of pediatric patients was 16 years. 55% and 30% of patients were WHO II and III grades, respectively. The left frontal lobe and right cerebellum were the statistically significant locations for pDGs, while the anterior horn of ventricles for adult DGs. A potential association between the expression of PD-L1 and TAMs was found in pDGs (p = 0.002, R = 0.670). The right posterior external capsule and the lateral side of the anterior horn of the left ventricle were predominant locations for the adult patients with high expression of B7-H3 and low expression of PD-L1 compared to pediatric ones, respectively. Pediatric patients showed significantly improved overall survival compared with adults. The prognostic roles of immune checkpoint molecules and TILs/TAMs were not significantly different between the two groups. Conclusion: Immune checkpoint-associated locations of diffuse gliomas comparing pediatric with adult patients could be helpful for the immunotherapy decisions and design of clinical trials.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    World Scientific Pub Co Pte Ltd ; 2018
    In:  The American Journal of Chinese Medicine Vol. 46, No. 06 ( 2018-01), p. 1225-1241
    In: The American Journal of Chinese Medicine, World Scientific Pub Co Pte Ltd, Vol. 46, No. 06 ( 2018-01), p. 1225-1241
    Abstract: Subarachnoid hemorrhage (SAH) is a severe cerebrovascular disease with few effective pharmacotherapies available. Salvia miltiorrhiza, a traditional Chinese medicinal herb, has been widely used to treat cardiovascular diseases for centuries. Recent studies have demonstrated that magnesium lithospermate B (MLB), a bioactive ingredient extracted from Salvia miltiorrhiza, exerts neuroprotective effects in several central nervous system insults. However, little is known about the role of MLB in SAH-induced brain injury and the exact molecular mechanism. In the current study, we studied the neuroprotective effects of MLB in SAH and explored the potential mechanism. Adult male Sprague–Dawley rats were subjected to an endovascular perforation process to produce an SAH model. MLB was administrated intraperitoneally at 30[Formula: see text] min after SAH with a dose of 25[Formula: see text]mg/kg or 50[Formula: see text] mg/kg. We found that administration of MLB significantly attenuated brain edema and neurological deficits after SAH. In addition, immunofluorescence staining demonstrated that MLB dose-dependently inhibited the activation of microglia and reduced neuronal apoptosis. Western blot analysis showed that MLB decreased the expression of inflammatory cytokine TNF-[Formula: see text] and pro-apoptotic protein cleaved caspase-3. More importantly, MLB increased the expression of SIRT1, while inhibited the acetylation of NF-[Formula: see text] B. Furthermore, pretreatment with sirtinol (a selective inhibitor of SIRT1) reversed all the aforementioned effects of MLB after SAH. In conclusion, our results indicated that MLB exerted robust neuroprotective effects against SAH via suppressing neuroinflammation and apoptosis. These neuroprotective effects of MLB against SAH might be exerted via regulating the SIRT1/NF-[Formula: see text]B pathway. MLB or the SIRT1/NF-[Formula: see text] B pathway could be a novel and promising therapeutic strategy for SAH management.
    Type of Medium: Online Resource
    ISSN: 0192-415X , 1793-6853
    Language: English
    Publisher: World Scientific Pub Co Pte Ltd
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 10 ( 2020-8-21)
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2018
    In:  Frontiers in Neuroscience Vol. 12 ( 2018-7-24)
    In: Frontiers in Neuroscience, Frontiers Media SA, Vol. 12 ( 2018-7-24)
    Type of Medium: Online Resource
    ISSN: 1662-453X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2411902-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...