GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oncology Letters, Spandidos Publications, ( 2018-05-09)
    Type of Medium: Online Resource
    ISSN: 1792-1074 , 1792-1082
    Language: Unknown
    Publisher: Spandidos Publications
    Publication Date: 2018
    detail.hit.zdb_id: 2573196-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2012
    In:  IEEE Transactions on Plasma Science Vol. 40, No. 12 ( 2012-12), p. 3360-3366
    In: IEEE Transactions on Plasma Science, Institute of Electrical and Electronics Engineers (IEEE), Vol. 40, No. 12 ( 2012-12), p. 3360-3366
    Type of Medium: Online Resource
    ISSN: 0093-3813 , 1939-9375
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2012
    detail.hit.zdb_id: 2025402-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Physics of Plasmas, AIP Publishing, Vol. 19, No. 6 ( 2012-06-01)
    Abstract: The implosion dynamics of wire-array Z-pinches are investigated numerically in 2D (r, θ) geometry by using a resistive MHD code. It is assumed that the wires have expanded to plasmas with diameter d0, which is used as the initial condition for the consequent implosion process. In fact, the explosion process of individual wires is not included. By changing d0, the effects of the wire expansion degree on the implosion dynamics are analyzed. When d0 is larger, the current density is more concentrated at the outer side of the wires and the fraction of current flow around the wire plasmas is nearly in proportion to d0. As a result, the ablation rate of wires is increased and the implosion phase starts earlier. This conclusion agrees with the simulation works of other authors [Chittenden et al., Phys. Plasmas 11(3), 1118 (2004)]. When the array radius and initial wire plasma diameter are fixed, the increase of wire number leads to the azimuthal merge of wires during implosion. When the wires number exceed a critical value, which is related to d0, wire plasmas can merge to a continuous shell with an azimuthal perturbation in density, which depends on the initial wires number.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Chinese Physics B, IOP Publishing, Vol. 28, No. 3 ( 2019-03), p. 035201-
    Type of Medium: Online Resource
    ISSN: 1674-1056 , 2058-3834
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 2412147-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Physics of Plasmas, AIP Publishing, Vol. 19, No. 12 ( 2012-12-01)
    Abstract: Implosions of (quasi-)spherical loads with mass redistribution and displacement modification are investigated numerically. Both methods can theoretically counterbalance the nonuniformity of magnetic pressure along the load surface and realize quasi-spherical Z-pinch implosions. Mass redistribution is feasible for spherical loads with large radius and weight, while the displacement modification is more suitable for light loads, such as those composed of wire arrays. Simulation results suggest that, for mass redistributed spherical loads, wall instabilities induced by polar mass flows will deform the imploding shell. For prolate spherical loads, in which the wall instability cannot develop, the kinetic energy distribution is disturbed at high latitude. These passive behaviors and their possible mitigation methods, such as reshaping the electrode, are investigated numerically in this paper.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2012
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    AIP Publishing ; 2011
    In:  Physics of Plasmas Vol. 18, No. 4 ( 2011-04-01)
    In: Physics of Plasmas, AIP Publishing, Vol. 18, No. 4 ( 2011-04-01)
    Abstract: The dynamics of ablated plasmas of wire-array Z-pinches are studied numerically in (r,θ) geometry by using the magnetohydrodynamic (MHD) simulation model in which the mass injection boundary conditions are presented, and two-dimensional spatio-temporal distributions of magnetic field and precursor current during the ablation phase are obtained. The ablated-plasma dynamics contains four processes: drifting toward the axis, arriving at the axis and forming the precursor column, and contraction and expansion of the precursor column. The relationship among the maximum inward velocity of ablated plasma streams and the initial wire array parameters is analyzed and it is found that this velocity is relatively sensitive to the change of inter-wire separation but weakly depends on the original array radius. The results are in reasonable agreement with the experiments on MAGPIE facility. The origin of the current flow in the precursor plasmas is analyzed from the point of view of the B-field convection in (r,θ) plane. The dynamics of ablation streams determine the distribution of magnetic field and the current density Jz inside the wire array. The precursor current can be approximately calculated by the integral of Jz inside the region of a radius near to the column. In this model, the fraction of precursor current is less than 10% of the total current, which is close to the experimental results. When the current waveform is fixed, the increase of the inter-wire gap or decrease of the initial radius will lead to the increase of the precursor current.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2018
    In:  Acta Physica Sinica Vol. 67, No. 2 ( 2018), p. 025203-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 2 ( 2018), p. 025203-
    Abstract: The dynamic hohlraum is a possible approach to driving inertial confinement fusion.Recently, dynamic hohlraum experiments on the primary test stand (PTS) facility were conducted, and preliminary results show that a dynamic hohlraum is formed, which can be used for driving target implosion.In this paper, the implosion dynamics of Z-pinch dynamic hohlraum driven target implosion with the drive current of PTS facility is numerically investigated.A physical model is established, in which a dynamic hohlraum is composed of a cylindrical tungsten wire-array and a CHO foam converter, and the target is composed of a high density CH ablator and low density DT fuel.The drive current is calculated by an equivalent circuit model, and the integrated simulations in (r, Z) plane by using a two-dimensional radiation magneto-hydrodynamics code are performed to describe the overall implosion dynamics.It is shown that the wire-array plasma is accelerated in the run-in stage, and in this stage the target keeps almost immobile.As the accelerated wire-array plasma impacts onto the low-density foam converter, a local region with high temperature and high pressure is generated near the W/CHO boundary due to energy thermalization, and this thermalization process will last several nanoseconds.This high temperature region will launch a strongly radiating shock.At the same time, high temperature radiation also appears and transfer to the target faster than the shock.When the high temperature radiation transfers to the surface of the target, the ablator is heated and the ablated plasma will expand outward, and a high-density flying layer will also be generated and propagate inward.After the high-density layer propagates to the ablator/fuel boundary, the DT fuel will be compressed to a high-density and high-temperature state finally.At the same time, the cylindrical shock, which is generated from the impact of the wire-array plasma on the foam converter, will gradually propagate to the ablator plasma.After it propagates over the converter/ablator boundary, it will be decelerated by the ablation pressure, which is beneficial to isolating the fuel compression from the direct cylindrical shock.It is shown that though the trajectories of the outer boundaries of the ablator at the equator and at the poles are completely different due to shock interaction at the equator, the fuel compression is nearly uniform due to radiation compression. It is shown that the asymmetry of fuel compression is mainly caused by the non-uniformity of the hohlraum radiation at the equator and at the poles.Generally, there are two differences between the radiation temperatures at the equator and at the poles, namely the time difference due to the finite velocity of radiation transfer, and the peak temperature difference due to energy coupling.If the target is small, the peak radiation temperature at the equator is almost the same as at the pole.The fuel at the equator is first compressed just because the radiation first transfers to the target equator.As the size of the target is increased, the difference in peak radiation temperature will be more serious, thus causing weaker fuel compression at the equator than at the poles.Certainly, if the target size is too large, the cylindrical shock will directly interact on the target at the equator, resulting in complete asymmetry at the equator with respect to the shock at the poles, which should be avoided.Furthermore, it is shown that as the target size is increased, the final neutron yield will first increase and then decrease, which means that there is a relatively optimal size selection for target implosion.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2018
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2010
    In:  IEEE Transactions on Plasma Science Vol. 38, No. 4 ( 2010-04), p. 554-566
    In: IEEE Transactions on Plasma Science, Institute of Electrical and Electronics Engineers (IEEE), Vol. 38, No. 4 ( 2010-04), p. 554-566
    Type of Medium: Online Resource
    ISSN: 0093-3813 , 1939-9375
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2010
    detail.hit.zdb_id: 2025402-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Physics of Plasmas, AIP Publishing, Vol. 17, No. 6 ( 2010-06-01)
    Abstract: This paper is to numerically investigate, in one dimension, the effects of precursor plasma resulted from wire-array ablation on the performance of its following implosion after the ablation. The wire-array ablation is described by an analytic model, which consists of a rocket model or Sasorov’s expression of wire-array mass ablation rate, the evolution equation of magnetic field, and several roughly reasonable assumptions. The following implosion is governed by the radiation magnetohydrodynamics. The implosion processes of wire-array Z-pinch from plasma shells prefilled and un-prefilled by the low-density plasma inside them are studied, and that from the wire-array ablations, which may be changed through varying the ablation time, ablation rate, and ablation velocity Vabl, are also simulated. The obtained results reveal that the prefilled low-density plasma and the precursor plasma from the wire-array ablation help to enhance the plasma shell pinch and the final implosion of the wire array, respectively, compared to the pinch of un-prefilled plasma shell. With the same plasma masses, which are distributed in the interior of the array and the shell, and modified Spitzer resistivity, the implosions that start from the wire ablation develop faster than that from the plasma shell with the prefill. If more substance ablates from the wire array before the start of its implosion, the final Z-pinch performance could be better. The Z-pinch plasma is highly magnetized with driven current more than 3 MA.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2010
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2014
    In:  Acta Physica Sinica Vol. 63, No. 12 ( 2014), p. 125207-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 63, No. 12 ( 2014), p. 125207-
    Abstract: In order to study the transportation and conversion of the electromagnetic energy from the pulsed power driver to Z-pinch load, a circuit model for the driver is analyzed, and coupled with magneto-hydrodynamics model for the load plasma. Our simulation results are compared with those obtained from circuit software and experimental results based on the “Qiangguang-I” facility. The simulated voltage and current waveform coincide well with the experimental results. Results show that the pulse width decreases and the peak increases as the pulse transmits from the storage capacitors to the pulse transmission line. When the storage capacitors are initially charged at 35 kV, the peak of electric powers at the transfer capacitor, the pulse forming line and the pulse output line are 0.23, 0.80 and 1.46 TW, respectively, and their rise-times (10%-90%) are 550, 160 and 45 ns, respectively. The load current is 1.5 MA and the X-ray radiation power is 0.58 TW.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2014
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...