GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Allergy and Clinical Immunology, Elsevier BV, Vol. 128, No. 6 ( 2011-12), p. 1360-1363.e4
    Type of Medium: Online Resource
    ISSN: 0091-6749
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2006613-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1937-1937
    Abstract: Background Nonsense-mediated decay (NMD) is a cellular quality control system that degrades mRNAs containing premature termination codons (PTCs) as well as ~10% of normal mRNAs (Kurosaki and Maquat, 2016). NMD thus prevents translation of misfolded proteins, and potential activation of the unfolded protein response (UPR). Mutations in splicing factors such as SF3B1, SRSF2, U2AF1 and ZRSR2 found in hematological as well as solid tumors, can lead to generation of aberrant mRNAs that contain PTCs. Aberrant splicing patterns in cancer cells can possibly result in increased pressure on the NMD machinery. CC-115, a potent inhibitor of mTOR kinase (TORK) and of DNA-dependent protein kinase, (DNA-PK; Mortensen et al., 2015; Tsuji et al., 2017), is in clinical development for the treatment of solid and hematologic malignancies (Thijssen et al., 2016). Preclinical data revealed an additional target of CC-115 and its differential effect on NMD. Our hypothesis was that a subset of tumor cells, especially hematologic tumors with high protein production and/or splicing factor mutations, would be susceptible to NMD inhibition by CC-115. Methods In total, 141 cell lines were screened for sensitivity to CC-115-mediated inhibition of proliferation and induction of cell death, in comparison to specific inhibition of TORK (CC-223). Isogenic DNA-PK knockout cell lines HCT116/HCT116 DNA-PK-/- and M059K/M059J DNA-PK-/- were treated with CC-115 and CC-223. Activity on NMD in vivo was tested using HCT-116 xenograft tumors treated with Vehicle or CC-115. Dependence on CC-115 sensitivity was determined using CRISPR/Cas9 technology of apoptosis or UPR genes in various MM cell lines. RNA sequencing was used for identification of potential targets in sensitive and resistant cell lines. Results A subset of cancer cell lines underwent cell death at sub-micromolar concentrations of CC-115 due to inhibition of NMD, but this was independent of mutations in splicing factors such as SF3B1. We next focused on MM cells as these generally produce high levels of (immunoglobulin) proteins and are prone to ER stress, and therefore potentially susceptible to NMD inhibition. Indeed, treatment with CC-115 resulted in activation of the UPR independent of TORK and DNA-PK inhibition, and cell death in 11/12 MM cell lines. Activity of CC-115 correlated strongly with cell death by the known ER-stress inducer, thapsigargin. Cell death by CC-115 occurred by the mitochondrial pathway of apoptosis, as it depended on caspase activity and the presence of Bax-Bak. Analysis of RNA sequencing data is ongoing and has indicated potential targets dictating sensitivity to CC-115-mediated cell death. Conclusions We describe that hematologic tumors with high protein production are specifically sensitive to CC-115, a novel and clinically exploitable inhibitor of NMD. This might lead to application in malignancies that depend on NMD to avoid excessive protein stress, such as multiple myeloma. Disclosures Garrick: Celgene: Employment. Trowe:Celgene: Employment. Kater:Acerta: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Eldering:Celgene: Research Funding. Filvaroff:Celgene: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 4235-4235
    Abstract: Abstract 4235 Red blood cell production is a strictly regulated process and homeostatic maintenance of the erythropoietic system requires equilibrium between the rate of erythroid cell production and red blood cell destruction. Hematopoietic cytokines play a crucial role in regulating expansion, differentiation and survival of erythrocyte progenitors. Shortage of growth factors triggers the mitochondrial apoptosis pathway, which is critically dependent on Bcl-2 family members. However, the contribution of this mechanism in the regulation of erythropoiesis remains ill-defined. This prompted us to screen for candidate genes involved in this process in erythroid progenitors. We found that the expression of Noxa, a pro-apoptotic Bcl-2 family member, is upregulated during erythroid differentiation and following cytokine-withdrawal in erythroid progenitor cells. Knockdown or deletion of Noxa in IL-3 dependent human and murine erythroid progenitor cell lines increased Mcl-1 levels, which correlated with markedly decreased apoptosis following cytokine withdrawal. Importantly, Noxa ablation in mice increased extra-medullary erythropoiesis, resulting in enhanced numbers of early splenic erythroblasts and circulating reticulocytes. Noxa-deficient hematopoietic progenitors were more resistant to apoptosis induced by growth factor deprivation and displayed increased colony-forming potential. In addition, combined loss of Noxa and Bim resulted in enhanced resistance of erythroid progenitors to cytokine withdrawal compared to WT or single Bim knockouts, suggesting a non-redundant role for Noxa and Bim in regulating survival of erythroid progenitors in response to cytokine deprivation. Finally, in a model of acute haemolytic anaemia, deletion of Noxa enhanced subsequent hematocrit recovery. Together, these findings identify a non-redundant role for BH3-only protein Noxa in the regulation of erythroblast survival during early erythropoiesis. Therefore, Noxa may be a novel component to control red blood cell numbers and modulation of this pathway could be envisaged in therapeutic options for treatment of anaemia. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-01), p. 2103-2103
    Abstract: Background : Seliciclib (R-roscovitine) is a cyclin-dependent kinase inhibitor in clinical development. It triggers apoptosis by inhibiting de novo transcription of the short-lived anti-apoptotic Mcl-1 protein, but it is unclear if and how this leads to Bax or Bak activation that is required for most forms of cell death. Aim: To study the effects of seliciclib on apoptosis gene expression and Mcl-1 and Bcl-2 protein interactions in B cell chronic lymphocytic leukemia (B-CLL), a malignancy with known aberrant apoptosis regulation. Methods: Purified B-CLL cells (PBMC consisting of 〉 90% B-CLL cells; n=20) and Ramos cell lines overexpressing different apoptosis regulators were used in this study. The effect of seliciclib on viability, apoptosis gene expression pattern, and protein associations was investigated via RT-Multiplex-Ligation-dependent Probe Amplification (RT-MLPA), Western blotting and co-immunoprecipitation assays. Ramos cells were transduced with retroviral vectors expressing either Noxa siRNA, Bim siRNA or control-GFP virus, and tested for different apoptosis stimuli. Results: We found that although seliciclib resulted in proteasome-dependent Mcl-1 degradation within 4 hrs in B-CLL cells, Bax and Bak activation and apoptosis occurred with a considerable delay, i.e. at 16 hrs. During this period, there was no evidence of transcriptional changes in p53-responsive or apoptosis-related genes. In freshly isolated, viable B-CLL cells, pro-survival Mcl-1 was engaged by the pro-apoptotic proteins Noxa and Bim but not by Bak. The contribution of Noxa [Figure1] and Bim (liberated from McL-1 within 4 hours) as specific mediators of seliciclib-induced apoptosis was demonstrated via RNAi in two model systems. Interestingly, 16 hrs after seliciclib treatment, there was a clear accumulation of Bcl-2, Bim, and Bax in the detergent insoluble (mitochondria containing) fraction of B-CLL cells. This suggests that after Mcl-1 degradation, the remaining apoptosi s neutralizing capacity of Bcl-2 is gradually overwhelmed, probably resulting in Bax multimerisation and pore formation in the mitochondria. Conclusions: These data support the ’oncogene-addiction’ model in which malignant cells depend on increased Bcl-2 levels, and extend it to include Mcl-1. Furthermore, since Noxa is elevated in B-CLL, its involvement in p53-independent apoptosis suggests this BH3-only protein may be a therapeutic target. Figure Figure
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 2983-2983
    Abstract: Seliciclib (cyc202, R-roscovitine) is a novel cyclin dependent kinase inhibitor currently in pre-clinical testing. It indirectly inhibits RNA polymerase II and has been shown to be effective against B-cell malignancies by inducing apoptosis and Mcl-1 degradation. The aim of this study was to dissect the underlying apoptotic pathway(s) of seliciclib in chronic lymphocytic leukemia (B-CLL). Treatment of CLL cells with & gt;10 μM seliciclib in vitro induced apoptosis within 24 hours, irrespective of IgVH mutation status (n=20). Gene profiling by means of RT-MLPA, did not reveal involvement of p53 as indicated by the absence of Puma upregulation. None of the & gt;30 other apoptosis genes tested were induced; instead signals for certain labile mRNAs (Mcl-1, A1/Bfl-1, PI-9) were clearly decreased upon seliciclib. Detailed investigation of B cell lines overexpressing various anti-apoptotic proteins (Bcl-2, caspase-9-DN, Flip, FADD-DN), indicated that seliciclib activated the mitochondrial but not the death receptor pathway. Neither mitochondrial activation nor the rapid degradation of Mcl-1 protein could be prevented by caspase inhibition (zVAD) or overexpression of inactive caspase-9 (DN). This indicated that Mcl-1 decline is an upstream, caspase-independent event. Immuno-precipitation demonstrated that pro-survival Mcl-1 is engaged by pro-apoptotic Noxa and Bim. The specific contribution of Noxa was confirmed by RNAi, resulting in inhibition of apoptosis after seliciclib, but not after staurosporin, CD95- or BCR triggering. These findings demonstrate that seliciclib induces rapid, p53-independent apoptosis via Mcl-1 degradation and mitochondrial activation. The involvement of Noxa, which is highly expressed in CLL, suggests this BH3-only protein may be a novel therapeutic target.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Immunity, Elsevier BV, Vol. 32, No. 6 ( 2010-06), p. 754-765
    Type of Medium: Online Resource
    ISSN: 1074-7613
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 2001966-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Immunity, Elsevier BV, Vol. 24, No. 6 ( 2006-06), p. 703-716
    Type of Medium: Online Resource
    ISSN: 1074-7613
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2006
    detail.hit.zdb_id: 2001966-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3871-3871
    Abstract: Abstract 3871 Introduction: Lymph nodes (LN) from chronic lymphocytic leukaemia (CLL) patients contain characteristic proliferation centres, which are interspersed with CD154+ CD4+ T cells. We have previously shown that in vitro stimulation of peripheral blood (PB) CLL cells with CD154-expressing fibroblasts (3T40L) results in an apoptotic profile similar to the one found in LN (Smit et al, Blood 2007 Feb 15;109(4):1660; Kater et al, Br J Haematol 2004;127(4):404). However this stimulus fails to induce proliferation of CLL cells. In fact, the signals involved in CLL proliferation in vivo remain largely unknown. It has recently been described that IL-21 which is produced by activated T cells, has an essential role in activation and proliferation of normal B cells. The aim of this work was to analyze the contribution of IL-21 to the proliferation of CLL cells, both in vitro and in vivo. Results: We stimulated CLL cells with IL-21 in the presence or absence of 3T40L cells and assessed proliferation 5 days later. We observed an increase in the proliferation of CLL cells after the combined stimulation with CD40L and IL-21. In this setting, CLL cells divided once or twice. However, when fresh 3T40L cells and IL-21 were provided every 3–4 days, CLL cells could proliferate passed the fifth division. To analyze the contribution of IL-21 to proliferation in an in vitro setting better resembling the in vivo situation, we then studied the interaction between CLL cells and autologous activated T cells. CLL cells were positively selected from PB and cultured with autologous T cells, activated with CD3/CD28 antibodies (Tact), in the presence/absence of blocking antibodies against CD40L or IL-21 receptor (IL-21R). Proliferation was assessed 2 days later. Co-culture with Tact led to a CD40L- and IL-21-dependent increase in Ki67+CLL cells. Next, we assessed the gene expression profile of CLL cells stimulated with CD40L and/or IL-21 by microarray analysis. CLL cells were stimulated overnight with medium, 3T40L cells, IL-21 or the combination, and then RNA was obtained and analyzed with Affimetrix U133 2.0 microarrays. In CD40L-stimulated cells more than 30 genes were up-regulated by IL-21 (fold induction 〉 4; p 〈 0.005), among which there were components of the JAK-STAT pathway like STAT3, and molecules related to cell proliferation like BCL3 and GS02. This information will allow us to generate an IL-21 signalling signature related to CLL cell proliferation that we will use to interrogate gene expression changes in CLL cells from LN samples. Finally, we wished to ascertain whether IL-21 is being produced in vivo in CLL. For this, we performed IHC stainings on paraffin LN samples from untreated patients. We were able to observe IL-21 production by large cells, scattered among small lymphocytes, which are currently being characterized. Conclusion: Our results indicate that IL-21 might play a role in the proliferation of CLL cells in vivo. This is not only important for understanding the biology of CLL but might also open new venues to treatment. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3043-3043
    Abstract: Intro - Agents targeting the apoptosis pathway, like the Bcl-2 inhibitor venetoclax, are highly effective in chronic lymphocytic leukemia (CLL). However, not all patients experience deep responses and acquired resistance has already been described. T cell mediated lysis is another tool currently exploited in hematologic malignancies. In contrast to acute lymphoblastic leukemia (ALL) however, efficacy of autologous based T cell therapy, such as CAR T cells, in CLL has been low. This is linked to a CLL mediated acquired T cell dysfunction. Bispecific T cell engagers targeting CD19 are successfully applied in ALL, but whether it overcomes the acquired T cell dysfunction in CLL is unknown. We therefore tested efficacy of a CD3xCD19 Dual Affinity Re-Targeting molecule (DART) in CLL. Since it has been observed that bispecific antibodies can overcome deficient synapse formation in CLL (Robinson et al, 2018) and based on our assumption that T cell mediated lysis differs from venetoclax-mediated killing, we hypothesized that usage of a CD3xCD19 DART in CLL overcomes T cell dysfunction and will be effective against venetoclax resistant CLL. Methods - Co-culture of CLL derived or aged-matched healthy donor (HD) CD4+ and/or CD8+ T cells with (CD40 activated) primary CLL or CD19+ cell lines JeKo-1 or Ramos in presence of CD3xCD19 (JNJ-64052781), CD3xFITC, anti-CD3/28 antibodies was performed. R esults - JeKo-1 cells were highly sensitive to CD3xCD19 mediated HD T cell killing with close to 70% of lysis in a concentration of 10ng/mL using an E:T ratio of 4:1. In the same conditions, primary CLL cells proved sensitive for CD3xCD19 mediated HD T cell killing with 50% of lysis. Killing was observed irrespective of IGHV mutation or chemorefractory status. We next compared HD with CLL-derived T cells by measuring activation levels between direct TCR (anti-CD3/CD28) and CD3xCD19 stimulation. As described, TCR stimulation resulted in impaired CLL CD4+ and CD8+ T cell activation and proliferation when compared to HD. In contrast, treatment of CLL derived PBMCs with CD3xCD19 did not resulted in dysfunctional CLL-derived T cell responses (Fig 1A-C). Consistently, co-culture of CLL derived CD4+, CD8+ or a combination with either JeKo-1 or allogeneic CLL cells in the presence of CD3xCD19 resulted in significant cytotoxicity (Fig. 1D). In the allogeneic setting, cytotoxic capacity of CD4+ T cells was similar to their CD8+ counterparts. When targeting autologous CLL, a benefit was observed when both CD4+ and CD8+ T cells were present (Fig. 1D). We then studied whether venetoclax resistant CLL cells could be targeted by CD3xCD19 mediated T cell killing. Bcl-2 overexpressing Ramos were equally lysed in presence of the CD3xCD19 DART as their wildtype counterpart, indicating that Bcl-2 expression does not inhibit CD3xCD19 mediated cell death. Following CLL cell stimulation by CD40 ligation, anti-apoptotic Bcl-XL, Bfl-1 and Mcl-1 are highly induced (Thijssen et al., 2015) resulting in venetoclax resistance (Fig 1E). Nevertheless, CD40L stimulated CLL cells were as efficiently lysed upon CD3xCD19 treatment as unstimulated CLL. (Fig 1F). This indicates that an augmented apoptotic threshold does not impact efficacy of CD3xCD19. Further examination of the mechanism of CD3xCD19 mediated killing showed that lysis depended on granzymes, as blocking granule exocytosis prevented cell death. Independence of the mitochondrial apoptotic pathway was shown by equal sensitivity to CD3xCD19 mediated T cell lysis comparing BAX/BAK knockout Jeko-1 cells to the parental cell line. Also, caspase blockage did not inhibit cell death, pointing to apoptosis independent killing. In concordance, PARP cleavage could only be detected when caspase activity was not blocked. Conclusion - This is the first report describing reversal of CLL mediated T cell dysfunction by applying a CD3xCD19 DART. Furthermore, it shows that venetoclax resistant CLL can still be efficiently targeted by T cells, in a non-apoptotic fashion. These results imply that T cell mediated therapy could be used alongside venetoclax. Figure 1 Disclosures Eldering: Celgene: Research Funding; Roche: Research Funding; Janssen Pharmaceutical Companies: Research Funding. van der Windt:Genmab: Employment. Kater:Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche/Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 120, No. 1 ( 2010-1-4), p. 214-222
    Type of Medium: Online Resource
    ISSN: 0021-9738
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2010
    detail.hit.zdb_id: 2018375-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...