GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Metabolites, MDPI AG, Vol. 13, No. 8 ( 2023-08-03), p. 910-
    Abstract: Neuroblastoma (NB) is a childhood cancer in which amplification of the MYCN gene is the most acknowledged marker of poor prognosis. MYCN-amplified NB cells rely on both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) for energy production. Previously, we demonstrated that a ketogenic diet (KD) combined with metronomic cyclophosphamide (CP) delayed tumor growth in MYCN-amplified NB xenografts. The anti-diabetic drug metformin (MET) also targets complex I of the OXPHOS system. Therefore, MET-induced disruptions of mitochondrial respiration may enhance the anti-tumor effect of CP when combined with a KD. In this study, we found that MET decreased cell proliferation and mitochondrial respiration in MYCN-amplified NB cell lines, while the combination of KD, MET, and low-dose CP (triple therapy) also reduced tumor growth and improved survival in vivo in MYCN-amplified NB xenografts. Gene ontology enrichment analysis revealed that this triple therapy had the greatest effect on the transcription of genes involved in fatty acid ß-oxidation, which was supported by the increased protein expression of CPT1A, a key mitochondrial fatty acid transporter. We suspect that alterations to ß-oxidation alongside the inhibition of complex I may hamper mitochondrial energy production, thus explaining these augmented anti-tumor effects, suggesting that the combination of MET and KD is an effective adjuvant therapy to CP in MYCN-amplified NB xenografts.
    Type of Medium: Online Resource
    ISSN: 2218-1989
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662251-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-01-30)
    Abstract: Chronic lymphocytic leukaemia is the most prevalent leukaemia in Western countries. It is an incurable disease characterized by a highly variable clinical course. Chronic lymphocytic leukaemia is an ideal model for studying clonal heterogeneity and dynamics during cancer progression, response to therapy and/or relapse because the disease usually develops over several years. Here we report an analysis by deep sequencing of sequential samples taken at different times from the affected organs of two patients with 12- and 7-year disease courses, respectively. One of the patients followed a linear pattern of clonal evolution, acquiring and selecting new mutations in response to salvage therapy and/or allogeneic transplantation, while the other suffered loss of cellular tumoral clones during progression and histological transformation.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 1987-1987
    Abstract: Chronic myeloid leukemia (CML) is a myeloproliferative disease in which BCR/ABL enhances survival of leukemic cells through modulation of pro- and anti-apoptotic molecules. Recent data suggest that pro-apoptotic Bim plays a role as a tumor-suppressor in myeloid cells, and that leukemic cells express only low amounts of this death activator. In the current study, we have investigated expression of Bim in primary CML cells and in the CML cell lines K562 and KU812, and in Ba/F3 cells inducibly expressing BCR/ABL on exposure to doxycycline (TonB.210-X). As assessed by Northern- and Western blotting, primary CML cells were found to express significantly lower amounts of Bim mRNA and Bim protein compared to normal bone marrow cells. The BCR/ABL-inhibitors imatinib (Novartis Pharma AG) and AMN107 (Novartis Pharma AG) were found to promote Bim expression in CML cells at pharmacologic concentrations. Correspondingly, BCR/ABL was found to down-regulate expression of Bim in TonB.210-X cells. The BCR/ABL-induced decrease in expression of Bim in leukemic cells was found to be a post-transcriptional event that depended on signaling through MEK, and was abrogated by the proteasome-inhibitor MG132. Interestingly, MG132 was found to up-regulate Bim-expression and to suppress the growth of Ba/F3 cells containing either wild-type BCR/ABL or various imatinib-resistant mutants of BCR/ABL including the T315I mutant that is resistant to all currently available ATP-competitive tyrosine kinase inhibitors (IC50: 30–100 nM). To confirm the role of Bim as a tumor suppressor in CML, a Bim specific siRNA was transfected into K562 cells. This siRNA was found to counteract imatinib- and MG132-induced cell death. In conclusion, our data identify BCR/ABL as a Bim-suppressor in CML cells and suggest, that re-expression of Bim by proteasome inhibition or by targeting of signaling pathways downstream of BCR/ABL may be an attractive therapeutic approach in imatinib-resistant CML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2698-2698
    Abstract: Abstract 2698 Background: Splenic marginal zone lymphoma (SMZL) is a small B cell neoplasm whose molecular pathogenesis is still unknown. It has a relatively indolent course, but a fraction of the cases may show an aggressive behavior. The lack of comprehensive molecular analysis for SMZL precludes the development of targeted therapy. Here we studied the mutational status of 6 SMZL samples using Whole Exome Next Generation Sequencing. Methods: Genomic DNA was extracted from splenic tumor or peripheral blood samples and oral mucosa as the corresponding non-tumor control. Whole exome sequencing was performed at CNAG (Barcelona, Spain) following standard protocols for high-throughput paired-end sequencing on the Illumina HiSeq2000 instruments (Illumina Inc., San Diego, CA). The variant calling was performed using an in house written software calling potential mutations showing a minimum independent multi-aligner evidence. Results: We performed paired-end-76pb whole exome sequencing on 6 SMZL samples and the corresponding normal counterpart. Three of the samples corresponded to CD19 isolated cells from peripheral blood, while other three corresponded to spleen freshly frozen tissue. The mean coverage obtained was 104.07 (82.46–119.59) with a mean of 91.41% (90.41–93.73) of bases with at least 15× coverage. After filtering, 237 substitutions and 21 indels where obtained. No recurrent variation was found. Six of the variations found here were already described in other malignancies. Variations were classified into silent (75), missense (147), nonsense (8), and essential splice (5), according to their potential functional effect, and into tolerated (54) and deleterious (76) according to the “variant effect predictor” tool of Ensembl Genome Browser. Whole exome sequencing permitted us to identify variations in several genes of TLR/NFkB pathway (Myd88, Peli3), BCR (Myd88, Arid3A) or signal transduction (ARHGAP32), essential pathways for B-cell differentiation. These variations and other involving selected genes, such as the Bcl6 repressor BCOR, were validated by capillary sequencing. These results were confirmed and expanded in a second series of 10 new cases by exome sequencing. Conclusions: SMZL samples contain somatic mutation involving genes regulating BCR signaling, TLR/NFKB pathways and chromatin remodeling. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 1986-1986
    Abstract: Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the BCR/ABL oncogene and an increased survival of leukemic cells. The BCR-ABL tyrosine kinase inhibitor imatinib has successfully been introduced as a treatment of CML. However, resistance after an intitial response is common in patients with advanced disease, and it is not yet clear if responses in early disease phases will be durable. Therefore, current studies focus on novel potential drug-targets in CML cells. We have recently identified heme oxygenase-1 (HO-1) as a novel BCR/ABL-dependent survival-molecule in primary CML cells. In this study, we analyzed signal transduction pathways underlying BCR/ABL-induced expression of HO-1 and evaluated the role of HO-1 as a potential new target of drug therapy. We found that the PI3-kinase inhibitor LY294002 and MEK inhibitor PD98059 downregulate expression of HO-1 in CML cells. In addition, constitutively active Ras- and Akt -mutants were found to promote expression of HO-1 in Ba/F3 cells, further supporting the involvement of the PI3-kinase/Akt as well as the MAPK pathway in regulating HO-1 expression. To establish a role for HO-1 in survival of CML cells, expression of HO-1 was silenced by siRNAs which resulted in apoptosis of K562 cells. Next, HO-1 was targeted in CML cells by pegylated zinc protoporphyrin (PEG-ZnPP), a competitive inhibitor of HO-1. Exposure to PEG-ZnPP resulted in growth inhibition and induction of apoptosis in primary CML cells as well as in the CML-derived cell lines K562 and KU812 with IC50 values ranging between 1–10 μM. The growth-inhibitory effects of PEG-ZnPP were not only observed in CML cells responsive to imatinib, but also in imatinib-resistant K562 cells and Ba/F3 cells expressing various imatinib-resistant mutants of BCR/ABL (T315I, E255K, M351T, Y253F, Q252H, H396P). Moreover, imatinib and PEG-ZnPP were found to exert synergistic growth inhibitory effects on imatinib-resistant leukemic cells. Together, these data suggest that HO-1 represents a novel drug target in cells expressing BCR/ABL, including those with resistance to imatinib.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 111, No. 4 ( 2008-02-15), p. 2200-2210
    Abstract: Resistance toward imatinib and other BCR/ABL tyrosine kinase inhibitors remains an increasing clinical problem in the treatment of advanced stages of chronic myeloid leukemia (CML). We recently have identified the heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) as a BCR/ABL-dependent survival molecule in CML cells. We here show that silencing Hsp32/HO-1 in CML cells by an siRNA approach results in induction of apoptosis. Moreover, targeting Hsp32/HO-1 by either pegylated zinc protoporphyrine (PEG-ZnPP) or styrene maleic acid-micelle–encapsulated ZnPP (SMA-ZnPP) resulted in growth inhibition of BCR/ABL-transformed cells. The effects of PEG-ZnPP and SMA-ZnPP were demonstrable in Ba/F3 cells carrying various imatinib-resistant mutants of BCR/ABL, including the T315I mutant, which exhibits resistance against all clinically available BCR/ABL tyrosine kinase inhibitors. Growth-inhibitory effects of PEG-ZnPP and SMA-ZnPP also were observed in the CML-derived human cell lines K562 and KU812 as well as in primary leukemic cells obtained from patients with freshly diagnosed CML or imatinib-resistant CML. Finally, Hsp32/HO-1–targeting compounds were found to synergize with either imatinib or nilotinib in producing growth inhibition in imatinib-resistant K562 cells and in Ba/F3 cells harboring the T315I mutant of BCR/ABL. In summary, these data show that HO-1 is a promising novel target in imatinib-resistant CML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 105, No. 8 ( 2005-04-15), p. 3303-3311
    Abstract: Antiapoptotic members of the bcl-2 family have recently been implicated in the pathogenesis of chronic myeloid leukemia (CML), a hematopoietic neoplasm associated with the BCR/ABL oncogene. We have examined expression of MCL-1 in primary CML cells and BCR/ABL-transformed cell lines. Independent of the phase of disease, isolated primary CML cells expressed myeloid cell leukemia-1 (mcl-1) mRNA and the MCL-1 protein in a constitutive manner. The BCR/ABL inhibitor imatinib (=STI571) decreased the expression of MCL-1 in these cells. Correspondingly, BCR/ABL enhanced mcl-1 promoter activity, mcl-1 mRNA expression, and the MCL-1 protein in Ba/F3 cells. BCR/ABL-dependent expression of MCL-1 in Ba/F3 cells was counteracted by the mitogen-activated protein-kinase/extracellular signal-regulated kinase (MEK) inhibitor, PD98059, but not by the phosphoinositide 3-kinase inhibitor, LY294002. Identical results were obtained for constitutive expression of MCL-1 in primary CML cells and the CML-derived cell lines K562 and KU812. To investigate the role of MCL-1 as a survival-related target in CML cells, mcl-1 siRNA and mcl-1 antisense oligonucleotides (ASOs) were applied. The resulting down-regulation of MCL-1 was found to be associated with a substantial decrease in viability of K562 cells. Moreover, the mcl-1 ASO was found to synergize with imatinib in producing growth inhibition in these cells. Together, our data identify MCL-1 as a BCR/ABL-dependent survival factor and interesting target in CML. (Blood. 2005;105:3303-3311)
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2924-2924
    Abstract: Abstract 2924 Background: Clonal composition and clone dynamic changes of neoplasms are a controversial issue, whose investigation is now facilitated by the development of massive parallel sequencing. Here we have analyzed the changes in the mutational spectrum associated with progression, treatment response and relapse in a multiple myeloma patient. We sequenced exomes for the primary quiescent-tumor, the progression and the relapsed samples. M & M: Patient and samples description Samples from asymptomatic, progression and relapse phases were compared by FISH and Whole exome massive parallel sequencing in a multiple myeloma patient carrying the t(4;14)(p16.3;q32) alteration. At relapse the cytogenetic study identified the presence of two major clones, 13q14 deletion and t(4;14)(p16.3;q32) in the 60% of the cells, and 17p13 deletion in the 12% of the cells. Whole exome sequencing was performed at CNAG (Barcelona, Spain) following standard protocols for high-throughput paired-end 76pb sequencing on the Illumina HiSeq2000 instruments (Illumina Inc., San Diego, CA). The variant calling was performed using an in house written software calling potential mutations showing a minimum independent multi-aligner evidence. Results: We performed whole exome sequencing on 3 tumor samples from the same patient: the first one at the time of diagnosis correspond to bone marrow infiltrated by 7% of plasma cells. The two additional samples, at progression and relapse, were done in CD138+ bone marrow cells, at this moment the percentage of infiltration was of 84% and 64% respectively. The germinal DNA from the same patient was used as reference. The mean coverage obtained for the four samples were 93x, with around 85% of bases with at least 20X coverage. After filtering, a total of 104 single nucleotide variations (SNV) were identified, some of them in more than one sample. The variations were classified into silent (25), missense (71), nonsense (6), and essential splice (2), according to their potential functional effect. In addition to t(4;14) and del13q14, progression and relapse samples shared 36 common SNVs. There were also some variants gained and/or loss in the different time points, suggesting the presence of at least five different clones, independent but related in their evolution. The two main clones were present in progression and relapse samples, but the ratio of the mutant alleles decreased in parallel to the decrement in the percentage of cells carrying on the described cytogenetic alterations Conclusions: There is a coupling between the cytogenetic and tumor sequence changes indicating that tumor at progression was composed by a dominant clone, together with multiple minor clones. Relapse after treatment was associated with multiple changes in the clone dynamics, progressive reduction of the main clone, emerging of new subclones and lost of minor clones. Dynamic changes along progression could be facilitated/induced by the therapy received. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-09-25)
    Abstract: Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that almost exclusively affects girls and is totally disabling. Three genes have been identified that cause RTT: MECP2 , CDKL5 and FOXG1 . However, the etiology of some of RTT patients still remains unknown. Recently, next generation sequencing (NGS) has promoted genetic diagnoses because of the quickness and affordability of the method. To evaluate the usefulness of NGS in genetic diagnosis, we present the genetic study of RTT-like patients using different techniques based on this technology. We studied 1577 patients with RTT-like clinical diagnoses and reviewed patients who were previously studied and thought to have RTT genes by Sanger sequencing. Genetically, 477 of 1577 patients with a RTT-like suspicion have been diagnosed. Positive results were found in 30% by Sanger sequencing, 23% with a custom panel, 24% with a commercial panel and 32% with whole exome sequencing. A genetic study using NGS allows the study of a larger number of genes associated with RTT-like symptoms simultaneously, providing genetic study of a wider group of patients as well as significantly reducing the response time and cost of the study.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 16, No. 7 ( 2017-07-01), p. 1366-1376
    Abstract: The development of resistance to tyrosine kinase inhibitors (TKI) limits the long-term efficacy of cancer treatments involving them. We aimed to understand the mechanisms that underlie acquired resistance (AR) to MET inhibitors in lung cancer. EBC1 cells, which have MET amplification and are sensitive to TKIs against MET, were used to generate multiple clones with AR to a MET-TKI. Whole-exome sequencing, RNA sequencing, and global DNA methylation analysis were used to scrutinize the genetic and molecular characteristics of the resistant cells. AR to the MET-TKI involved changes common to all resistant cells, that is, phenotypic modifications, specific changes in gene expression, and reactivation of AKT, ERK, and mTOR. The gene expression, global DNA methylation, and mutational profiles distinguished at least two groups of resistant cells. In one of these, the cells have acquired sensitivity to erlotinib, concomitantly with mutations of the KIRREL, HDAC11, HIATL1, and MAPK1IP1L genes, among others. In the other group, some cells have acquired inactivation of neurofibromatosis type 2 (NF2) concomitantly with strong overexpression of NRG1 and a mutational profile that includes changes in LMLN and TOMM34. Multiple independent and simultaneous strategies lead to AR to the MET-TKIs in lung cancer cells. The acquired sensitivity to erlotinib supports the known crosstalk between MET and the HER family of receptors. For the first time, we show inactivation of NF2 during acquisition of resistance to MET-TKI that may explain the refractoriness to erlotinib in these cells. Mol Cancer Ther; 16(7); 1366–76. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...