GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Lab on a Chip, Royal Society of Chemistry (RSC), Vol. 22, No. 6 ( 2022), p. 1126-1136
    Abstract: Sickle cell disease (SCD) is a genetic condition that causes abnormalities in hemoglobin mechanics. Those affected are at high risk of vaso-occlusive crisis (VOC), which can induce life-threatening symptoms. The development of measurements related to vaso-occlusion facilitates the diagnosis of the patient's disease state. To complement existing readouts, we design a microfluidic-informatics analytical system with varied confined geometries for the quantification of sickle cell disease occlusion. We detect an increase in physical occlusion events in the most severe hemoglobin SS group. We use bioinformatics and modeling to quantify the in vitro disease severity score (DSS) of individual patients. We also show the potential effect of hydration, clinically recommended for crisis management, on reducing the disease severity of high-risk patients. Overall, we demonstrate the device as an easy-to-use assay for quick occlusion information extraction with a simple setup and minimal additional instruments. We show the device can provide physical readouts distinct from clinical data. We also show the device sensitivity in separate samples from patients with different disease severity. Finally, we demonstrate the system as a potential platform for testing the effectiveness of therapeutic strategies ( e.g. hydration) on reducing sickle cell disease severity.
    Type of Medium: Online Resource
    ISSN: 1473-0197 , 1473-0189
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 2056646-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 39 ( 2023-09-26)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 39 ( 2023-09-26)
    Abstract: Physical forces are prominent during tumor progression. However, it is still unclear how they impact and drive the diverse phenotypes found in cancer. Here, we apply an integrative approach to investigate the impact of compression on melanoma cells. We apply bioinformatics to screen for the most significant compression-induced transcriptomic changes and investigate phenotypic responses. We show that compression-induced transcriptomic changes are associated with both improvement and worsening of patient prognoses. Phenotypically, volumetric compression inhibits cell proliferation and cell migration. It also induces organelle stress and intracellular oxidative stress and increases pigmentation in malignant melanoma cells and normal human melanocytes. Finally, cells that have undergone compression become more resistant to cisplatin treatment. Our findings indicate that volumetric compression is a double-edged sword for melanoma progression and drives tumor evolution.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...