GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 11, No. 5 ( 2018-05-29), p. 1929-1969
    Abstract: Abstract. This paper presents the Meso-NH model version 5.4. Meso-NH is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry. It is a limited-area model employing advanced numerical techniques, including monotonic advection schemes for scalar transport and fourth-order centered or odd-order WENO advection schemes for momentum. The model includes state-of-the-art physics parameterization schemes that are important to represent convective-scale phenomena and turbulent eddies, as well as flows at larger scales. In addition, Meso-NH has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling. Here, we present the main innovations to the dynamics and physics of the code since the pioneer paper of Lafore et al. (1998) and provide an overview of recent applications and couplings.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Monthly Weather Review, American Meteorological Society, Vol. 148, No. 9 ( 2020-09-01), p. 3653-3680
    Abstract: The representation of tropical precipitation is evaluated across three generations of models participating in phases 3, 5, and 6 of the Coupled Model Intercomparison Project (CMIP). Compared to state-of-the-art observations, improvements in tropical precipitation in the CMIP6 models are identified for some metrics, but we find no general improvement in tropical precipitation on different temporal and spatial scales. Our results indicate overall little changes across the CMIP phases for the summer monsoons, the double-ITCZ bias, and the diurnal cycle of tropical precipitation. We find a reduced amount of drizzle events in CMIP6, but tropical precipitation occurs still too frequently. Continuous improvements across the CMIP phases are identified for the number of consecutive dry days, for the representation of modes of variability, namely, the Madden–Julian oscillation and El Niño–Southern Oscillation, and for the trends in dry months in the twentieth century. The observed positive trend in extreme wet months is, however, not captured by any of the CMIP phases, which simulate negative trends for extremely wet months in the twentieth century. The regional biases are larger than a climate change signal one hopes to use the models to identify. Given the pace of climate change as compared to the pace of model improvements to simulate tropical precipitation, we question the past strategy of the development of the present class of global climate models as the mainstay of the scientific response to climate change. We suggest the exploration of alternative approaches such as high-resolution storm-resolving models that can offer better prospects to inform us about how tropical precipitation might change with anthropogenic warming.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of the Atmospheric Sciences Vol. 74, No. 10 ( 2017-10-01), p. 3271-3284
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 74, No. 10 ( 2017-10-01), p. 3271-3284
    Abstract: The overturning of Hector the Convector, a tropical multicellular convective system of northern Australia that regularly overshoots into the stratosphere, is synthesized at the scale of a large-eddy simulation. The isentropic analysis offers the advantage of filtering out the reversible motions due to gravity waves and taking into account the turbulent fluxes that contribute to the vertical transport. Two key circulations are characterized: the troposphere deep overturning and the mass exchange due to the overshoots into the stratosphere. The transition from deep to very deep convection is associated with a change in the diabatic tendency inside the tallest updrafts: the latent heat release due to the formation of a large amount of icy hydrometeors exceeds the loss of energy due to mixing with the drier, colder air of the environment. In agreement with a previous study of Hector examining the properties of its two tallest updrafts, the entrainment rate exhibits a minimum during the very deep convection phase as low as 0.04 km−1. The overturning intensity corroborates the Eulerian computation of the vertical mass flux in the midtroposphere and in the lower stratosphere. It however gives a lower estimate of the flux in the upper troposphere, filtering out the reversible motions, and a larger estimate in the lower troposphere and at the tropopause, where slow vertical motions contribute significantly to the transport.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of the Atmospheric Sciences Vol. 75, No. 12 ( 2018-12-01), p. 4383-4398
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 75, No. 12 ( 2018-12-01), p. 4383-4398
    Abstract: Overshoots are convective air parcels that rise beyond their level of neutral buoyancy. A giga-large-eddy simulation (100-m cubic resolution) of “Hector the Convector,” a deep convective system that regularly forms in northern Australia, is analyzed to identify overshoots and quantify the effect of hydration of the stratosphere. In the simulation, 1507 individual overshoots were identified, and 46 of them were tracked over more than 10 min. Hydration of the stratosphere occurs through a sequence of mechanisms: overshoot penetration into the stratosphere, followed by entrainment of stratospheric air and then by efficient turbulent mixing between the air in the overshoot and the entrained warmer air, leaving the subsequent mixed air at about the maximum overshooting altitude. The time scale of these mechanisms is about 1 min. Two categories of overshoots are distinguished: those that significantly hydrate the stratosphere and those that have little direct hydration effect. The former reach higher altitudes and hence entrain and mix with air that has higher potential temperatures. The resulting mixed air has higher temperatures and higher saturation mixing ratios. Therefore, a greater amount of the hydrometeors carried by the original overshoot sublimates to form a persistent vapor-enriched layer. This makes the maximum overshooting altitude the key prognostic for the parameterization of deep convection to represent the correct overshoot transport. One common convection parameterization is tested, and the results suggest that the overshoot downward acceleration due to negative buoyancy is too large relative to that predicted by the numerical simulations and needs to be reduced.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2019
    In:  Atmospheric Chemistry and Physics Vol. 19, No. 9 ( 2019-05-16), p. 6459-6479
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 9 ( 2019-05-16), p. 6459-6479
    Abstract: Abstract. The contribution of deep convection to the amount of water vapour and ice in the tropical tropopause layer (TTL) from the tropical upper troposphere (UT; around 146 hPa) to the tropopause level (TL; around 100 hPa) is investigated. Ice water content (IWC) and water vapour (WV) measured in the UT and the TL by the Microwave Limb Sounder (MLS; Version 4.2) are compared to the precipitation (Prec) measured by the Tropical Rainfall Measurement Mission (TRMM; Version 007). The two datasets, gridded within 2∘ × 2∘ horizontal bins, have been analysed during the austral convective season, December, January, and February (DJF), from 2004 to 2017. MLS observations are performed at 01:30 and 13:30 local solar time, whilst the Prec dataset is constructed with a time resolution of 1 h. The new contribution of this study is to provide a much more detailed picture of the diurnal variation of ice than is provided by the very limited (two per day) MLS observations. Firstly, we show that IWC represents 70 % and 50 % of the total water in the tropical UT and TL, respectively, and that Prec is spatially highly correlated with IWC in the UT (Pearson's linear coefficient R=0.7). We propose a method that uses Prec as a proxy for deep convection bringing ice up to the UT and TL during the growing stage of convection, in order to estimate the amount of ice injected into the UT and the TL, respectively. We validate the method using ice measurements from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) during the period DJF 2009–2010. Next, the diurnal cycle of injection of IWC into the UT and the TL by deep convection is calculated by the difference between the maximum and the minimum in the estimated diurnal cycle of IWC in these layers and over selected convective zones. Six tropical highly convective zones have been chosen: South America, South Africa, Pacific Ocean, Indian Ocean, and the Maritime Continent region, split into land (MariCont-L) and ocean (MariCont-O). IWC injection is found to be 2.73 and 0.41 mg m−3 over tropical land in the UT and TL, respectively, and 0.60 and 0.13 mg m−3 over tropical ocean in the UT and TL, respectively. The MariCont-L region has the greatest ice injection in both the UT and TL (3.34 and 0.42–0.56 mg m−3, respectively). The MariCont-O region has less ice injection than MariCont-L (0.91 mg m−3 in the UT and 0.16–0.34 mg m−3 in TL) but has the highest diurnal minimum value of IWC in the TL (0.34–0.37 mg m−3) among all oceanic zones.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 149, No. 750 ( 2023-01), p. 325-347
    Abstract: Flower clouds are trade‐wind shallow cumuli, with tops reaching 3 km altitude, organised into 100‐km wide clusters. They are widespread over the subtropics and associated with the strongest cloud radiative effect among trade‐wind cumuli mesoscale organisations. In the context of large uncertainty in climate projections due to the representation of shallow clouds, major knowledge gaps remain about the global impact of mesoscale organisations and the local processes driving them. Here, the processes governing the flower organisation are investigated based on the case study of February 2, 2020 from the Elucidate the Couplings Between Clouds, Convection, and Circulation (EURECA) campaign, east of Barbados. One flower cloud is simulated with a large‐eddy simulation (LES), using the Meso‐NH model at 100‐m horizontal grid spacing, and validated extensively with high‐resolution observations from the High Altitude and Long‐range Research Aircraft (HALO), dropsondes, and satellite measurements. The cloud‐top altitudes exhibit a trimodal distribution. The processes shaping flower clouds are wide cold pools and cloudy updrafts organised in one large arc at the western edge. These updrafts are responsible for the highest cloud tops and drive most of the vertical turbulent fluxes of sensible heat, humidity, and momentum. A mesoscale circulation takes place at the scale of the flower clouds and makes them very similar to deep mesoscale convective systems.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Journal of Geophysical Research: Atmospheres Vol. 127, No. 5 ( 2022-03-16)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 127, No. 5 ( 2022-03-16)
    Abstract: The global water vapor budget of the low stratosphere is computed for the first time using a Global Storm‐Resolving Model (GSRM) ICOsahedral Non‐hydrostatic GSRM simulates the global distribution of very deep convection and its hydration of the stratosphere Over the simulated period, very deep convective systems contribute to 11% of the stratospheric water vapor input
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Continental Shelf Research, Elsevier BV, Vol. 145 ( 2017-08), p. 1-12
    Type of Medium: Online Resource
    ISSN: 0278-4343
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2025704-1
    detail.hit.zdb_id: 780256-0
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 11 ( 2016-06-07), p. 6977-6995
    Abstract: Abstract. In the framework of the Fennec international programme, a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynamics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing convection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of the Atmospheric Sciences Vol. 76, No. 2 ( 2019-02-01), p. 517-531
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 76, No. 2 ( 2019-02-01), p. 517-531
    Abstract: The passage of the Madden–Julian oscillation (MJO) over the Indian Ocean and the Maritime Continent is investigated during the episode of 23–30 November 2011. A Meso-NH convection-permitting simulation with a horizontal grid spacing of 4 km is examined. The simulation reproduces the MJO signal correctly, showing the eastward propagation of the primary rain activity. The atmospheric overturning is analyzed using the isentropic method, which separates the ascending air with high equivalent potential temperature from the subsiding air with low equivalent potential temperature. Three key circulations are found. The first two circulations are a tropospheric deep circulation spanning from the surface to an altitude of 14 km and an overshoot circulation within the tropical tropopause layer. As expected for circulations associated with deep convection, their intensities, as well as their diabatic tendencies, increase during the active phase of the MJO, while their entrainment rates decrease. The third circulation is characterized by a rising of air with low equivalent potential temperature in the lower free troposphere. The intensity of the circulation, as well as its depth, varies with the MJO activity. During the suppressed phase, this circulation is associated with a dry air intrusion from the subtropical region into the tropical band and shows a strong drying of the lower to middle troposphere.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...