GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Coatings, MDPI AG, Vol. 13, No. 2 ( 2023-02-17), p. 458-
    Abstract: In order to explore the toughening performance and failure mechanism of hollow slab beams strengthened with prestressed steel strand polyurethane cement composite, three test beams (L1–L3) were strengthened and one test beam (L0) was used as a comparison. The influence of different tensile stresses of steel strand and fiber additions on the flexural bearing capacity of the hollow slab beams, was studied. The cracking characteristics, load deflection relationship, ductility and strain of each test beam were compared and analyzed. The test results showed that the toughened material was well bonded to the hollow slab beam and the steel strand, which effectively inhibited the development of cracks in the test beams. The flexural bearing capacity of the strengthened test beams was significantly improved. The use of prestressed steel strand polyurethane cement composite material effectively improved the flexural bearing capacity of the test beams, and this reinforcement process can be further extended to engineering applications.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662314-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Buildings Vol. 13, No. 1 ( 2023-01-03), p. 126-
    In: Buildings, MDPI AG, Vol. 13, No. 1 ( 2023-01-03), p. 126-
    Abstract: Freeze–thaw damage is one of the primary causes deteriorating the seismic resistance of reinforced concrete (RC) structures. This paper proposed a freeze–thaw damage deterioration model for C30 concrete, and it can be employed to study the time-varying seismic performance of aging RC columns. Next, this study developed a seismic fragility analysis framework for deteriorating RC columns considering the effect of freeze–thaw damage. Considering the geometric parameters of the case-study bridge, the deterioration characteristics of material, and the uncertainties involved in structural modeling and ground motions, a probabilistic seismic fragility analysis on aging RC columns was conducted. The results indicate that the influence of freeze–thaw damage cannot be ignored in studying the seismic performance of aging RC structures. The seismic fragilities of deteriorating RC columns shown a nonlinear increase trend as the increased of freeze–thaw cycles and severity of the damage state. In the early stage of freeze–thaw cycles, the seismic fragilities of RC columns increased slowly. However, the closer to the later stage of freeze–thaw cycles, the more significant of the increase in the seismic fragilities of the columns.
    Type of Medium: Online Resource
    ISSN: 2075-5309
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2661539-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 8 ( 2022-04-16), p. 4418-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 8 ( 2022-04-16), p. 4418-
    Abstract: The Multidrug and toxin efflux (MATE) gene family plays crucial roles in plant growth and development and response to adverse stresses. This work investigated the structural and evolutionary characteristics, expression profiling and potential functions involved in aluminium (Al) tolerance from a genome-wide level. In total, 211 wheat MATE genes were identified, which were classified into four subfamilies and unevenly distributed on chromosomes. Duplication analysis showed that fragments and tandem repeats played the main roles in the amplification of TaMATEs, and Type II functional disproportionation had a leading role in the differentiation of TaMATEs. TaMATEs had abundant Al resistance and environmental stress-related elements, and generally had a high expression level in roots and leaves and in response to Al stress. The 3D structure prediction by AlphaFold and molecular docking showed that six TaMATE proteins localised in the plasmalemma could combine with citrate via amino acids in the citrate exuding motif and other sites, and then transport citrate to soil to form citrate aluminium. Meanwhile, citrate aluminium formed in root cells might be transported to leaves by TaMATEs to deposit in vacuoles, thereby alleviating Al toxicity.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Hindawi Limited ; 2021
    In:  Advances in Civil Engineering Vol. 2021 ( 2021-4-14), p. 1-17
    In: Advances in Civil Engineering, Hindawi Limited, Vol. 2021 ( 2021-4-14), p. 1-17
    Abstract: The forms of U-shaped UHPFRC beams have not been investigated for the highway footbridge. Compared with the traditional section forms, the U-shaped UHPFRC beams can reduce the material consumption under the condition of providing the same bearing capacity. Furthermore, prestressed U-shaped UHPFRC beams are rarely reported in the existing research. This paper explores the flexural behavior of prestressed ultrahigh-performance fiber-reinforced concrete (UHPFRC) beam bridge having unique design and the material properties of prestressed reinforcement combined with UHPFRC. Based on the unique shape of the U beam, the flexural performance test of the full-scale model of the prestressed UHPFRC U beam is conducted. Then, the finite element model considering material nonlinearity and structural ductility is established using Midas FEA software. Finally, the failure mode, failure process, cracking moment, ultimate moment, and strain of the full-scale model are studied. The calculation formulas of the flexural capacity of UHPFRC U beam considering ductile failure are derived. The comparative analysis results show that the prestressed UHPFRC U beam has an excellent flexural performance. The bending failure of a U-shaped beam belongs to the group of ductile failures, which is characterized by the main crack along the central rib and the loading center, which is accompanied by multiple microcracks. The failure process can be divided into four stages: linear deformation, microcracks development, main cracks development, and bearing capacity decline. The incorporation of steel fiber and the interaction between UHPFRC and reinforcement can effectively reduce the development of cracks. The U-beam bending moment is 50–55% of the ultimate bending moment. In the UHPFRC bridge design, the deformation can be used as a control index, and material advantages of the UHPFRC can be used to a certain extent. The strain-hardening characteristics of the UHPFRC are obvious in the loading process. The finite element analysis results show that the maximum strain value appears at the central rib, followed by the transverse strain value of the bottom plate, while the minimum strain is the longitudinal strain value of the bottom plate. The deformation of the rib plate is the largest, and the strain of the other measuring points changes slowly. The farther away from the center the measurement point is, the slower its strain changes. Therefore, the load is mainly caused by the central rib and the loading center plate. With the increase in the deformation, the load on both sides continuously moves to the central rib along the plate surface. This study can provide a useful reference for theoretical analysis and design of prestressed U-UHPFRC bridges.
    Type of Medium: Online Resource
    ISSN: 1687-8094 , 1687-8086
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2449760-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 2019
    In:  Structural Safety Vol. 79 ( 2019-07), p. 12-25
    In: Structural Safety, Elsevier BV, Vol. 79 ( 2019-07), p. 12-25
    Type of Medium: Online Resource
    ISSN: 0167-4730
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1502472-6
    detail.hit.zdb_id: 787237-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Engineering Structures Vol. 155 ( 2018-01), p. 61-72
    In: Engineering Structures, Elsevier BV, Vol. 155 ( 2018-01), p. 61-72
    Type of Medium: Online Resource
    ISSN: 0141-0296
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2002833-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    IOP Publishing ; 2020
    In:  Journal of Physics: Conference Series Vol. 1676 ( 2020-11), p. 012010-
    In: Journal of Physics: Conference Series, IOP Publishing, Vol. 1676 ( 2020-11), p. 012010-
    Type of Medium: Online Resource
    ISSN: 1742-6588 , 1742-6596
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2166409-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Buildings, MDPI AG, Vol. 12, No. 12 ( 2022-12-14), p. 2223-
    Abstract: The combined action of freeze–thaw cycles and chloride-induced corrosion are generally recognized as one of the main causes of the degradation of the mechanical properties and seismic performance of reinforced concrete (RC) structures in the northern frozen coastal regions. To investigate the degradation mechanisms of the seismic performance of RC columns subjected to the combined action of freeze–thaw cycles and chloride-induced corrosion, the impact of freeze–thaw cycles on the chloride diffusion coefficient of concrete was studied through concrete deterioration tests and theoretical analysis. This paper proposed a time-dependent deterioration model for RC columns, which is suitable to consider the combined action of freeze–thaw cycles and chloride-induced deterioration. The proposed deterioration model could be applied to the investigations of time-dependent seismic performance and the seismic fragility of RC columns. Based on the established deterioration model, this paper proposed a time-dependent seismic fragility analysis framework for the aging RC columns, considering the combined action of freeze–thaw cycles and chloride-induced corrosion. In addition, a representative three-span RC continuous T-shaped girder bridge that is located in the high-latitude northern frozen coastal regions of China was taken as the case study, and the time-dependent seismic fragility analysis of RC columns was conducted considering the involved uncertainties in geometric parameters, the deterioration mechanisms of the materials, and ground motions. The time-dependent seismic fragility curves of RC columns were obtained at different service time points. The results indicated that the combined action of freeze–thaw cycles and chloride-induced deterioration had a significant influence on the time-dependent seismic responses of the deteriorating RC columns. Under the combined action of freeze–thaw cycles and chloride-induced corrosion, when the RC bridge was in service for 75 years, the stirrup strength decreased by 3.88% and the cross-sectional area decreased by 30.03%. The peak stress of the confined concrete decreased by 52.1% and its peak strain increased by 12.2 times, respectively. Moreover, the time-dependent seismic fragilities of the aging RC columns under different damage states exhibited a nonlinear increase as the service life increased.
    Type of Medium: Online Resource
    ISSN: 2075-5309
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661539-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2011
    In:  Procedia Engineering Vol. 18 ( 2011), p. 363-368
    In: Procedia Engineering, Elsevier BV, Vol. 18 ( 2011), p. 363-368
    Type of Medium: Online Resource
    ISSN: 1877-7058
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2509658-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  BMC Genomics Vol. 23, No. 1 ( 2022-12)
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 23, No. 1 ( 2022-12)
    Abstract: Drought stress is the most limiting factor for plant growth and crop production worldwide. As a major cereal crop, wheat is susceptible to drought. Thus, discovering and utilizing drought-tolerant gene resources from related species are highly important for improving wheat drought resistance. In this study, the drought tolerance of wheat Zhongmai 8601- Thinopyrum intermedium 7XL/7DS translocation line YW642 was estimated under drought stress, and then two-dimensional difference gel electrophoresis (2D-DIGE) based proteome analysis of the developing grains was performed to uncover the drought-resistant proteins. Results The results showed that 7XL/7DS translocation possessed a better drought-tolerance compared to Zhongmai 8601. 2D-DIGE identified 146 differential accumulation protein (DAP) spots corresponding to 113 unique proteins during five grain developmental stages of YW642 under drought stress. Among them, 55 DAP spots corresponding to 48 unique proteins displayed an upregulated expression, which were mainly involved in stress/defense, energy metabolism, starch metabolism, protein metabolism/folding and transport. The cis-acting element analysis revealed that abundant stress-related elements were present in the promoter regions of the drought-responsive protein genes, which could play important roles in drought defense. RNA-seq and RT-qPCR analyses revealed that some regulated DAP genes also showed a high expression level in response to drought stress. Conclusions Our results indicated that Wheat- Th. intermedium 7XL/7DS translocation line carried abundant drought-resistant proteins that had potential application values for wheat drought tolerance improvement.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...