GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 51 ( 2010-12-21), p. 22157-22162
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 51 ( 2010-12-21), p. 22157-22162
    Abstract: Explaining the Late Pleistocene demise of many of the world's larger terrestrial vertebrates is arguably the most enduring and debated topic in Quaternary science. Australia lost 〉 90% of its larger species by around 40 thousand years (ka) ago, but the relative importance of human impacts and increased aridity remains unclear. Resolving the debate has been hampered by a lack of sites spanning the last glacial cycle. Here we report on an exceptional faunal succession from Tight Entrance Cave, southwestern Australia, which shows persistence of a diverse mammal community for at least 100 ka leading up to the earliest regional evidence of humans at 49 ka. Within 10 millennia, all larger mammals except the gray kangaroo and thylacine are lost from the regional record. Stable-isotope, charcoal, and small-mammal records reveal evidence of environmental change from 70 ka, but the extinctions occurred well in advance of the most extreme climatic phase. We conclude that the arrival of humans was probably decisive in the southwestern Australian extinctions, but that changes in climate and fire activity may have played facilitating roles. One-factor explanations for the Pleistocene extinctions in Australia are likely oversimplistic.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Royal Society ; 2019
    In:  Royal Society Open Science Vol. 6, No. 11 ( 2019-11), p. 191173-
    In: Royal Society Open Science, The Royal Society, Vol. 6, No. 11 ( 2019-11), p. 191173-
    Abstract: Teeth were an important innovation in vertebrate evolution but basic aspects of early dental evolution remain poorly understood. Teeth differ from other odontode organs, like scales, in their organized, sequential pattern of replacement. However, tooth replacement patterns also vary between the major groups of jawed vertebrates. Although tooth replacement in stem-osteichthyans and extant species has been intensively studied it has been difficult to resolve scenarios for the evolution of osteichthyan tooth replacement because of a dearth of evidence from living and fossil sarcopterygian fishes. Here we provide new anatomical data informing patterns of tooth replacement in the Devonian sarcopterygian fishes Onychodu s, Eusthenopteron and Tiktaalik and the living coelacanth Latimeria based on microfocus- and synchrotron radiation-based X-ray microtomography. Early sarcopterygians generated replacement teeth on the jaw surface in a pattern similar to stem-osteichthyans, with damaged teeth resorbed and replacement teeth developed on the surface of the bone. However, resorption grades and development of replacement teeth vary spatially and temporally within the jaw. Particularly in Onychodus , where teeth were also shed through anterior rotation and resorption of bone at the base of the parasymphyseal tooth whorl, with new teeth added posteriorly. As tooth whorls are also present in more stem-osteichthyans, and statodont tooth whorls are present among acanthodians (putative stem-chondrichthyans), rotational replacement of the anterior dentition may be a stem-osteichthyan character. Our results suggest a more complex evolutionary history of tooth replacement.
    Type of Medium: Online Resource
    ISSN: 2054-5703
    Language: English
    Publisher: The Royal Society
    Publication Date: 2019
    detail.hit.zdb_id: 2787755-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-09-04)
    Abstract: Diprotodontians are the morphologically and ecologically most diverse order of marsupials. However, an approximately 30-million-year gap in the Australian terrestrial vertebrate fossil record means that the first half of diprotodontian evolution is unknown. Fossil taxa from immediately either side of this gap are therefore critical for reconstructing the early evolution of the order. Here we report the likely oldest-known koala relatives (Phascolarctidae), from the late Oligocene Pwerte Marnte Marnte Local Fauna (central Australia). These include coeval species of Madakoala and Nimiokoala , as well as a new probable koala (?Phascolarctidae). The new taxon, Lumakoala blackae gen. et sp. nov., was comparable in size to the smallest-known phascolarctids, with body-mass estimates of 2.2–2.6 kg. Its bunoselenodont upper molars retain the primitive metatherian condition of a continuous centrocrista, and distinct stylar cusps B and D which lacked occlusion with the hypoconid. This structural arrangement: (1) suggests a morphocline within Phascolarctidae from bunoselenodonty to selenodonty; and (2) better clarifies the evolutionary transitions between molar morphologies within Vombatomorphia. We hypothesize that the molar form of Lumakoala blackae approximates the ancestral condition of the suborder Vombatiformes. Furthermore, it provides a plausible link between diprotodontians and the putative polydolopimorphians Chulpasia jimthorselli and Thylacotinga bartholomaii from the early Eocene Tingamarra Local Fauna (eastern Australia), which we infer as having molar morphologies consistent with stem diprotodontians.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Evolution, Wiley, Vol. 70, No. 3 ( 2016-03), p. 568-585
    Type of Medium: Online Resource
    ISSN: 0014-3820
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2036375-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Alcheringa: An Australasian Journal of Palaeontology, Informa UK Limited
    Type of Medium: Online Resource
    ISSN: 0311-5518 , 1752-0754
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2272537-4
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    The Royal Society ; 2019
    In:  Journal of The Royal Society Interface Vol. 16, No. 153 ( 2019-04-26), p. 20180957-
    In: Journal of The Royal Society Interface, The Royal Society, Vol. 16, No. 153 ( 2019-04-26), p. 20180957-
    Abstract: Dental microwear texture analysis (DMTA) quantifies microscopic scar or wear patterns left on teeth by different foods or extraneous ingested items such as grit. It can be a powerful tool for deducing the diets of extinct mammals. Here we investigate how intraspecific variation in the dental microwear of macropodids (kangaroos and their close relatives) can be used to maximize the dietary signal inferable from an inherently limited fossil record. We demonstrate significant intraspecific variation for every factor considered here for both scale-sensitive fractal analysis and International Organization for Standardization surface texture analysis variables. Intraspecific factors were then incorporated into interspecific (dietary) analyses through the use of Linear Mixed Effects modelling, incorporating Akaike's Information Criterion to compare models, and testing models through independent cross-validation. This revealed that for each DMTA variable only a small number of intraspecific factors need to be included to improve differentiation between species. Including specimen as a random factor accounted for stochastic inter-individual variation, and facet , incorporated effects of sampling location. Intraspecific effects of ecoregion, microscope, tooth position and wear were often but not universally important. We conclude that models of microwear data that include intraspecific variation can improve the resolution of dietary reconstructions.
    Type of Medium: Online Resource
    ISSN: 1742-5689 , 1742-5662
    Language: English
    Publisher: The Royal Society
    Publication Date: 2019
    detail.hit.zdb_id: 2156283-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2018
    In:  Science Vol. 362, No. 6410 ( 2018-10-05), p. 72-75
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 362, No. 6410 ( 2018-10-05), p. 72-75
    Abstract: Differentiating between ancient and younger, more rapidly evolved clades is important for determining paleoenvironmental drivers of diversification. Australia possesses many aridity-adapted lineages, the origins of which have been closely linked to late Miocene continental aridification. Using dental macrowear and molar crown height measurements, spanning the past 25 million years, we show that the most iconic Australian terrestrial mammals, “true” kangaroos (Macropodini), adaptively radiated in response to mid-Pliocene grassland expansion rather than Miocene aridity. In contrast, low-crowned, short-faced kangaroos radiated into predominantly browsing niches as the late Cenozoic became more arid, contradicting the view that this was an interval of global browser decline. Our results implicate warm-to-cool climatic oscillations as a trigger for adaptive radiation and refute arguments attributing Pleistocene megafaunal extinction to aridity-forced dietary change.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 23 ( 2021-06-08)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 23 ( 2021-06-08)
    Abstract: Development has often been viewed as a constraining force on morphological adaptation, but its precise influence, especially on evolutionary rates, is poorly understood. Placental mammals provide a classic example of adaptive radiation, but the debate around rate and drivers of early placental evolution remains contentious. A hallmark of early dental evolution in many placental lineages was a transition from a triangular upper molar to a more complex upper molar with a rectangular cusp pattern better specialized for crushing. To examine how development influenced this transition, we simulated dental evolution on “landscapes” built from different parameters of a computational model of tooth morphogenesis. Among the parameters examined, we find that increases in the number of enamel knots, the developmental precursors of the tooth cusps, were primarily influenced by increased self-regulation of the molecular activator (activation), whereas the pattern of knots resulted from changes in both activation and biases in tooth bud growth. In simulations, increased activation facilitated accelerated evolutionary increases in knot number, creating a lateral knot arrangement that evolved at least ten times on placental upper molars. Relatively small increases in activation, superimposed on an ancestral tritubercular molar growth pattern, could recreate key changes leading to a rectangular upper molar cusp pattern. Tinkering with tooth bud geometry varied the way cusps initiated along the posterolingual molar margin, suggesting that small spatial variations in ancestral molar growth may have influenced how placental lineages acquired a hypocone cusp. We suggest that development could have enabled relatively fast higher-level divergence of the placental molar dentition.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...