GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2022
    In:  Acta Physica Sinica Vol. 71, No. 15 ( 2022), p. 155201-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 15 ( 2022), p. 155201-
    Kurzfassung: A collision of supersonic jets in the double-cone ignition scheme is realized experimentally. With a very high deceleration, the supersonic jets merge into a high density plasma core, which will be further fast heated to ignition condition. Both the density and temperature of the plasma core are increased due to nearly 100% of kinetic energy of the jets converted into the internal energy. Some diagnostic tools are used to characterize the plasma, including X-ray Thomson scattering, hard X-ray monochromatic backlighting, X-ray streak imaging and framing imaging. The density of the supersonic jet arrive at about 5.5–8 g/cm〈sup〉3〈/sup〉. During colliding, a stagnation phase lasts about 200 ps, and the maximum density of the plasma core is increased to (46 ± 24) g/cm〈sup〉3〈/sup〉. By analyzing the velocity and temperature before and after colliding, it is found that 90% of the kinetic energy is converted into thermal energy.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2022
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 13 ( 2022), p. 135202-
    Kurzfassung: 〈sec〉Since completion of the National Ignition Facility (NIF) in 2010, more than 1030 experiments were carried out to achieve ignition. Though the experiments were unsuccessful in the first 8 years, the NIF has improved the experimental designs and achieved fusion yields from 55kJ, 170kJ to 1.35MJ since 2019, approaching to the ignition milestone. The designs are based on the experimental database, which has been widely used for optimization design, yield prediction, corrected simulation, etc. However, so far the published experimental data is very limited. Also, it is difficult to obtain a completion data matrix for analyzing and understanding the experimental designs of NIF experiments at each stage and to know how the NIF sets strategic priorities for each phase.〈/sec〉〈sec〉In this paper, we proposed an optimization method, which combines the PMM algorithm and trust region algorithm, to restore the missing NIF experimental data. Based on the completed data, the design principles of experiments on the NIF were analyzed, and the hot spot pressure was predicted by machine learning algorithms. The results may be helpful for the designs of laser fusion ignition experiments in China.〈/sec〉
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2022
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2018
    In:  Acta Physica Sinica Vol. 67, No. 22 ( 2018), p. 222101-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 67, No. 22 ( 2018), p. 222101-
    Kurzfassung: Neutron source has broad application prospects in crystallography, neutron irradiation, neutron therapy for cancer, and so on. As a new scheme to produce bright pulsed neutron source, the laser-driven neutron has attracted wide interest. In recent years, laser driven neutron sources have been extensively studied and the great progress has been made. Short pulsed laser driven neutron sources could be a compact and relatively cheap way to produce quasi-monoenergetic neutrons. The yields and the angular distributions of the laser-driven neutron sources are important in the research of laser-driven neutron sources and relevant applications. We conduct experimental investigation of this respect by using the XingGuang-Ⅲ high intense laser facility, which delivers synchronized picosecond and nanosecond laser pulses. The picosecond laser energy is 100 J, the pulse width is 1 ps, and the focusing spot diameter is 20 μm. At this time, the corresponding laser power density reaches 3×1019 W/cm2. A high-energy deuterium ion beam is produced by focusing the picosecond laser on a deuterated polyethylene foil, and the deuterium ion beam is incident on a secondary deuterated polyethylene planar target to activate the D-D reaction to obtain the neutron beam. In the experiment, the neutron yield and its angular distribution are measured by the different-sensitivity BD-PND bubble detectors, which are placed in the target chamber around the target. The emission of the neutron beam is found to be non-uniform. A maximum intensity of 5.13×107 n/sr is observed in the forward direction. The angular distribution of the neutron beam is theoretically calculated by taking into account the energy-angle cross section, the angular and energy distribution of the incident deuterium ion beam. The probability of the neutron energy-angle distribution in the laboratory system is obtained by the coordinate transformation from the probability in the center of mass frame. The results show good agreement with the experimental measurements. This experiment has a certain reference value in the practical application of D-D reaction neutron source.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2018
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 71, No. 9 ( 2022), p. 095202-
    Kurzfassung: Preformed plasma channels play important roles in many applications, such as laser wakefield acceleration, plasma lens, and so on. Laser pulses can be well guided when the radial density distribution of the plasma channel has a parabolic profile and it is matched with the laser focus. Discharging a gas-filled capillary is a possible way to form such plasma channels. In this work, we report the capillary discharging and laser guiding experiments performed in the Laboratory for Laser Plasmas at Shanghai Jiao Tong University. The plasma density distributions in the Helium-filled discharged capillary are measured by using the spectral broadening method. In a capillary with a length of 3 cm and a diameter of 300 μm, the plasma density profile is observed to be uniformly distributed along the axial direction and have a parabolic profile along the radial direction. Parameters for plasma channel generation are scanned. The deepest channel depth obtained is 28 μm, which is close to the focal spot radius of the laser used in the experiment. Laser guidance in the plasma channel is also studied. The results show that the laser can maintain its focus and continuously propagate when the channel depth matches the focal spot, indicating that the well guiding of the laser pulse by the preformed plasma channel is obtained. These studies may serve as the ground work for the future studies, such as staged laser wakefield acceleration and phase-locked wakefield acceleration.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2022
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 72, No. 17 ( 2023), p. 175203-
    Kurzfassung: 〈sec〉In the research of direct-drive laser fusion, laser irradiation of a target pellet can stimulate various laser plasma instabilities, such as stimulated Brillouin scattering (SBS) and cross-beam energy transfer (CBET), which significantly reduce the energy coupling efficiency between the laser and target pellet as well as the laser irradiation uniformity, leading the implosion quality to degrade. In the double-cone ignition (DCI) scheme of laser fusion scheme, the diagnosis of SBS and CBET is important owing to the different target configurations and oblique incident laser irradiation from the traditional spherically symmetric direct-drive central ignition scheme. In this paper, a simple and reliable backscattering diagnostic system is developed and applied to the diagnosis of the time-resolved backscattering spectrum at wavelength near 351 nm in a DCI experiment on the Shenguang-II upgrade (SG-IIU) facility. We use the system to carry out an experimental study of the SBS process and CBET process in DCI.〈/sec〉〈sec〉The backscattering diagnostic system collects the backscattered light signal through the scattered light by reflector mirror via an optical fiber. The signal is dispersed by a spectrometer and then recorded by a streak camera. The signal contains both the laser reference signal from the frequency doubling crystal and the backscattered light. With the help of the reference signal, the diagnostic system can reliably give the energy fraction of backscattered light. The experimental results show that the energy fraction of backscattered light around 351 nm is not higher than 3%, which is significantly lower than the experimental result of the spherically symmetric irradiation direct-drive central ignition scheme.〈/sec〉〈sec〉By analyzing the correlation between the backscattered signal and the laser irradiation conditions and combining the results of a set of comparative experiments, we determine that the backscattered signal contains both CBET and SBS. There is a significant difference in the CBET fraction between the backscattered signal of the #5 laser and the backscattered signal of the #7 laser. By combining the polarisation state of the laser beams, we confirm that this phenomenon is related to the polarisation angle between the laser beams. This finding provides a reference for designing subsequent large-scale laser fusion devices.〈/sec〉
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2023
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2019
    In:  Acta Physica Sinica Vol. 68, No. 12 ( 2019), p. 125201-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 68, No. 12 ( 2019), p. 125201-
    Kurzfassung: Microwave radiation in several gigahertz frequency band is a common phenomenon in laser-plasma interactions. It can last hundreds of nanoseconds and cause huge electromagnetic pulse disturbances to electrical devices in experiments. It has been found that the microwave radiation might originate from the oscillation of charged chambers, the return current on target holders, the dipole radiation, the quadrupole radiation, and the electron bunch emitted from the plasma to the vacuum. The microwave radiation waveform, frequency spectrum, and intensity depend on many factors such as laser pulse, target, and chamber parameter. To distinguish the microwave radiation mechanisms, the influence of the experimental parameters on the radiation characteristics should be investigated systematically. In this paper we investigate the microwave radiation influenced by the laser intensity in nanosecond laser-plasma interactions. It is found that the microwave radiation intensity varies nonmonotonically with the laser intensity. For the lower laser intensity, the radiation intensity first increases and then decreases with laser intensity increasing, the radiation field continuously oscillates in tens of nanoseconds, and the radiation spectrum contains two components below and above 0.3 GHz, respectively. For the higher laser intensity, the radiation intensity increases with the laser intensity increasing, the radiation field has a unipolar radiation lasting tens of nanoseconds, and the radiation spectrum mainly includes the component below 0.3 GHz. The waveform and spectrum analysis show that these phenomena are due to the difference of the radiation mechanisms at different laser intensities. The frequency component below and above 0.3 GHz are induced by the electron bunch emitted from the plasma to the vacuum and the dipole radiation respectively. At low laser intensity, both the dipole radiation and the electron bunch emitted from the plasma contribute to the microwave radiation. At high laser intensity, the microwave radiation is mainly produced by the electron beam emitted from the plasma to the vacuum. This work is significant for understanding the microwave radiation mechanisms in nanosecond laser-plasma interactions, and implies the potential to provide a reference to the diagnosing of the escape electrons and the sheath field on the target surface by the microwave radiation in laser-plasma interaction.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2019
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 8 ( 2021), p. 084104-
    Kurzfassung: With the development of laser and accelerator technology, and improvement of the particle energy and field intensity, the scattering process between electron and photon will reach the highly nonlinear regime, where the multi-photon process takes place and the quantum electrodynamics starts to play a role. In the near future, with the commissioning of the multi-PW laser facilities, these effects will be available. In this article, we review the recent progress of electron-photon scattering experiments, from single or few-photon regime to high-order multi-photon regime. In the scattering process, collimated bright X/gamma-energy photons are generated, making it possible to realize a compact top-table bright light source, which is also known as inverse Compton scattering source. Finally, the prospects and challenges of scattering experiments are discussed.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2021
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 2 ( 2020), p. 024205-
    Kurzfassung: Broadband terahertz (THz) emission generated from laser induced gas plasma provides an effective tool for studying nonlinear spectrum, imaging and remote sensing. Recently, the contribution of plasma oscillation to the THz emission was revealed from the nitrogen molecules pumped by intense two-color laser pulses. Plasma oscillation contributes only to the THz emission at relatively low plasma density due to negligible plasma absorption. More generally, with the THz emission generated from the ionizing gaseous medium, the surrounding plasma is expected to play an important role in the generation process. For the THz radiation from laser filament, the plasma region is extended in the laser propagation direction, and the effect of surrounding plasma on the emitted THz spectrum needs studying. In this work, we investigate the relation between pump power and filament length from THz spectrum emitted by air filament driven by two-color laser pulse. The time domain spectrum of THz field is recorded by an electro-optic (EO) sampling technique. In our experiments, significant frequency shifts are observed as the pump power and the filament length increase, and we find that the center frequency of the THz radiation is shifted towards longer wavelength, which is the so called red-shift of the THz spectrum. This red-shift is independent of THz radiation angle. The observations are explained by the plasma absorption inside the air filament. Our theoretical model is based on three mechanisms: the ionization-induced photocurrent, the plasma current oscillation and the plasma absorption. We coherently add up all the local THz fields inside the air filament, and simultaneously consider the plasma absorption induced correction of the THz spectrum. The simulation well reproduces the experimental observation. The skin depth decreases as the plasma density increases, thus the plasma absorption dominates the red-shift process. If the skin depth is larger than the filament length, the plasma oscillation contributes to the THz spectrum dominantly, and thus leading to the blue-shift of THz spectrum. Our results indicate that for the extended filament length or higher plasma density, the combining effect of photocurrent, plasma oscillation and absorption, results in the observed low-frequency broadband THz spectrum. Our study offers a method of coherently controlling the broadband THz spectrum.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2020
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 9 ( 2020), p. 094204-
    Kurzfassung: In order to obtain focal spot with high power and spot size comparable to wavelength scale, a novel approach to achieving the coherent combination of beam array by tightly focusing is proposed. The physical model of coherent beam combination of beam array via tightly focusing is built up by the use of the vector diffraction integral. Therefore the influences of beam configuration, polarization state, beam width, beam interval and numerical aperture of the tight focusing system on the characteristics of the combined beam are discussed in detail. The results indicate that the coherent combination effect of beam array with linear and circular polarization via tight focusing is the first best, and that with the radial polarization is the second best but that with the azimuthal polarization is the worst. The beam array of linear and circular polarization with rectangle configuration can be tightly focused onto center point, and the beam array with hexagon is also focused onto center point but with lower efficiency. In addition, by enlarging the beam width and the beam interval to a certain extent, the combination efficiency can be increased. By optimizing the beam configuration, beam width and interval, and selecting rational numerical aperture of the tightly focusing geometry, the focal spot with high energy concentration can be obtained with high beam quality and combination efficiency.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2020
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2017
    In:  Acta Physica Sinica Vol. 66, No. 7 ( 2017), p. 075202-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 7 ( 2017), p. 075202-
    Kurzfassung: A commercial magnetohydrodynamic (MHD) simulation package USIM is used to simulate two colliding plasma bubbles, which are not moving in the same horizontal line along the X direction. One similar experiment is performed on Shenguang II laser facility, in which four laser beams each with a wavelength of 0.351 m, total energy of 1.0 kJ, pulse duration of 1ns, are irradiated on an Al target with a thickness of 50 m. Every two beams constitute one 150-m-diameter focal spot with an intensity of 1015 W/cm2. The X-ray radiation results show the asymmetric and peach-like plasma bubbles, which are different from the results obtained before. Here we report the possible reason for the asymmetric and peach-like structure in experiment. External magnetic field on the order of 1 T is chosen to perform the simulations, which could be a possible applied B field in future experiments performing on the Shenguang II laser facility. In the simulations, different cases, especially the effects of different directional external magnetic fields, are considered. When the reversal directional magnetic fields are embedded in the Y direction, the magnetic field lines are frozen in the plasma bubbles, moving and approaching to each other gradually with the magnetic field lines. The change of the direction of magnetic field lines in the interaction region indicates that the magnetic reconnection has been happened. The outflows between two plasma bubbles in the experimental result could be explained by magnetic reconnection, which can efficiently convert stored magnetic energy into kinetic energy and thermal energy by accelerating and heating plasma particles. The density jump at the position of the bow structure indicates the generation of shock waves, where the velocity of flow v is also larger than the sound speed vs. When the same directional attractive magnetic fields are embedded in the Y direction, magnetic field lines are piled up in the central part, where the magnetic field density is high, which indicates that the magnetic repulsion has been happened. Magnetic repulsion also delays the colliding between two plasma bubbles. The shock waves each with a width of 4 m are also found in this case. The X-ray images in experiment and the density images in simulations show the similar peach-like structures, where the density results could be used to explain the X-ray radiation result for, I(v,Te)(2)/(Te) e(-(hv)/(kTe), I is the radiation intense, v is the plasma velocity, Te is the electron temperature, is the plasma density.Magnetic reconnection is the possible reason for the asymmetrical and peach-like structure in the experiment by comparing all kinds of simulation cases. The present simulation results will be of benefit to the future designing of experimental setup on the Shenguang II laser facility, although a two-fluids model is needed to build a spontaneous magnetic field for the real plasma bubbles.
    Materialart: Online-Ressource
    ISSN: 1000-3290 , 1000-3290
    Sprache: Unbekannt
    Verlag: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publikationsdatum: 2017
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...