GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2011
    In:  Journal of Geophysical Research Vol. 116, No. C3 ( 2011-03-09)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 116, No. C3 ( 2011-03-09)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2011
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 5 ( 2014-05-01), p. 1306-1328
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 5 ( 2014-05-01), p. 1306-1328
    Abstract: The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Ocean Science Vol. 13, No. 1 ( 2017-01-23), p. 61-75
    In: Ocean Science, Copernicus GmbH, Vol. 13, No. 1 ( 2017-01-23), p. 61-75
    Abstract: Abstract. In ice-covered regions it is challenging to determine constituent budgets – for heat and momentum, but also for biologically and climatically active gases like carbon dioxide and methane. The harsh environment and relative data scarcity make it difficult to characterize even the physical properties of the ocean surface. Here, we sought to evaluate if numerical model output helps us to better estimate the physical forcing that drives the air–sea gas exchange rate (k) in sea ice zones. We used the budget of radioactive 222Rn in the mixed layer to illustrate the effect that sea ice forcing has on gas budgets and air–sea gas exchange. Appropriate constraint of the 222Rn budget requires estimates of sea ice velocity, concentration, mixed-layer depth, and water velocities, as well as their evolution in time and space along the Lagrangian drift track of a mixed-layer water parcel. We used 36, 9 and 2 km horizontal resolution of regional Massachusetts Institute of Technology general circulation model (MITgcm) configuration with fine vertical spacing to evaluate the capability of the model to reproduce these parameters. We then compared the model results to existing field data including satellite, moorings and ice-tethered profilers. We found that mode sea ice coverage agrees with satellite-derived observation 88 to 98 % of the time when averaged over the Beaufort Gyre, and model sea ice speeds have 82 % correlation with observations. The model demonstrated the capacity to capture the broad trends in the mixed layer, although with a significant bias. Model water velocities showed only 29 % correlation with point-wise in situ data. This correlation remained low in all three model resolution simulations and we argued that is largely due to the quality of the input atmospheric forcing. Overall, we found that even the coarse-resolution model can make a modest contribution to gas exchange parameterization, by resolving the time variation of parameters that drive the 222Rn budget, including rate of mixed-layer change and sea ice forcings.
    Type of Medium: Online Resource
    ISSN: 1812-0792
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2183769-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Elem Sci Anth, University of California Press, Vol. 10, No. 1 ( 2022-02-07)
    Abstract: Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2022
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 52, No. 2 ( 2022-02), p. 189-203
    Abstract: Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy ( ε ) was elevated along the interleaving surfaces, with values up to 3 × 10 −8 W kg −1 compared to background ε of less than 10 −9 W kg −1 . Based on the distribution of ε as a function of density ratio R ρ , we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m −2 , with the localized flux above the uppermost warm layer elevated to 2–10 W m −2 . Lateral fluxes are much larger, estimated between 1000 and 5000 W m −2 , and set an overall decay rate for the intrusion of 1–5 years.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2018
    In:  Journal of Geophysical Research: Oceans Vol. 123, No. 8 ( 2018-08), p. 5571-5586
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 123, No. 8 ( 2018-08), p. 5571-5586
    Abstract: Ice roughness influenced internal wave properties for ice concentrations greater than approximately 70‐80% Internal wave energy levels transitioned abruptly at three ice concentrations: the initial decrease from 100%, 70‐80%, and 0% Internal wave amplitudes were 80% larger in open water than beneath full ice cover
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2018
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2022
    In:  Journal of Geophysical Research: Oceans Vol. 127, No. 5 ( 2022-05)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 127, No. 5 ( 2022-05)
    Abstract: Over 100–300 m depth at daily and seasonal timescales, increasing near‐inertial energy was associated with sea ice decline There is no evidence of increased turbulence over 100–300 m depth coincident with sea ice decline and the increase of near‐inertial energy Sea ice conditions impact the vertical scales of internal wave energy, explaining why vertical mixing has not changed under sea ice decline
    Type of Medium: Online Resource
    ISSN: 2169-9275 , 2169-9291
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 3094219-6
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Elementa: Science of the Anthropocene, University of California Press, Vol. 5 ( 2017-01-01)
    Abstract: The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations of momentum transfer, and imply that the future Arctic system could become increasingly seasonal.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2017
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2017
    In:  Geophysical Research Letters Vol. 44, No. 24 ( 2017-12-28)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 44, No. 24 ( 2017-12-28)
    Abstract: Eddy diffusivity in the Beaufort Gyre (BG) ranges from 100 to 500 m 2 /s near the surface, decaying rapidly with depth across the halocline Eddy‐induced upwelling largely compensates downward Ekman pumping in the BG Lateral eddy diffusivity plays a zero‐order role in the freshwater budget of the BG
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2017
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2011
    In:  Journal of Geophysical Research Vol. 116, No. C8 ( 2011-08-06)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 116, No. C8 ( 2011-08-06)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2011
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...