GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 93, No. 3 ( 2012-03-01), p. 347-370
    Abstract: The Infrared Atmospheric Sounding Interferometer (IASI) forms the main infrared sounding component of the European Organisation for the Exploitation of Meteorological Satellites's (EUMETSAT's) Meteorological Operation (MetOp)-A satellite (Klaes et al. 2007), which was launched in October 2006. This article presents the results of the first 4 yr of the operational IASI mission. The performance of the instrument is shown to be exceptional in terms of calibration and stability. The quality of the data has allowed the rapid use of the observations in operational numerical weather prediction (NWP) and the development of new products for atmospheric chemistry and climate studies, some of which were unexpected before launch. The assimilation of IASI observations in NWP models provides a significant forecast impact; in most cases the impact has been shown to be at least as large as for any previous instrument. In atmospheric chemistry, global distributions of gases, such as ozone and carbon monoxide, can be produced in near–real time, and short-lived species, such as ammonia or methanol, can be mapped, allowing the identification of new sources. The data have also shown the ability to track the location and chemistry of gaseous plumes and particles associated with volcanic eruptions and fires, providing valuable data for air quality monitoring and aircraft safety. IASI also contributes to the establishment of robust long-term data records of several essential climate variables. The suite of products being developed from IASI continues to expand as the data are investigated, and further impacts are expected from increased use of the data in NWP and climate studies in the coming years. The instrument has set a high standard for future operational hyperspectral infrared sounders and has demonstrated that such instruments have a vital role in the global observing system.
    Type of Medium: Online Resource
    ISSN: 1520-0477
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmosphere, MDPI AG, Vol. 12, No. 8 ( 2021-07-23), p. 946-
    Abstract: China was the first country to undergo large-scale lockdowns in response to the pandemic in early 2020 and a progressive return to normalization after April 2020. Spaceborne observations of atmospheric nitrogen dioxide (NO2) and oxygenated volatile organic compounds (OVOCs), including formaldehyde (HCHO), glyoxal (CHOCHO), and peroxyacetyl nitrate (PAN), reveal important changes over China in 2020, relative to 2019, in response to the pandemic-induced shutdown and the subsequent drop in pollutant emissions. In February, at the peak of the shutdown, the observed declines in OVOC levels were generally weaker (less than 20%) compared to the observed NO2 reductions (−40%). In May 2020, the observations reveal moderate decreases in NO2 (−15%) and PAN (−21%), small changes in CHOCHO (−3%) and HCHO (6%). Model simulations using the regional model MAGRITTEv1.1 with anthropogenic emissions accounting for the reductions due to the pandemic explain to a large extent the observed changes in lockdown-affected regions. The model results suggest that meteorological variability accounts for a minor but non-negligible part (~−5%) of the observed changes for NO2, whereas it is negligible for CHOCHO but plays a more substantial role for HCHO and PAN, especially in May. The interannual variability of biogenic and biomass burning emissions also contribute to the observed variations, explaining e.g., the important column increases of NO2 and OVOCs in February 2020, relative to 2019. These changes are well captured by the model simulations.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 14 ( 2016-07-21), p. 8963-8981
    Abstract: Abstract. Formic acid (HCOOH) is one of the most abundant volatile organic compounds in the atmosphere. It is a major contributor to rain acidity in remote areas. There are, however, large uncertainties on the sources and sinks of HCOOH and therefore HCOOH is misrepresented by global chemistry-transport models. This work presents global distributions from 2008 to 2014 as derived from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI), based on conversion factors between brightness temperature differences and representative retrieved total columns over seven regions: Northern Africa, southern Africa, Amazonia, Atlantic, Australia, Pacific, and Russia. The dependence of the measured HCOOH signal on the thermal contrast is taken into account in the conversion method. This conversion presents errors lower than 20 % for total columns ranging between 0.5 and 1 × 1016 molec cm−2 but reaches higher values, up to 78 %, for columns that are lower than 0.3 × 1016 molec cm−2. Signatures from biomass burning events are highlighted, such as in the Southern Hemisphere and in Russia, as well as biogenic emission sources, e.g., over the eastern USA. A comparison between 2008 and 2014 with ground-based Fourier transform infrared spectroscopy (FTIR) measurements obtained at four locations (Maido and Saint-Denis at La Réunion, Jungfraujoch, and Wollongong) is shown. Although IASI columns are found to correlate well with FTIR data, a large bias (〉 100 %) is found over the two sites at La Réunion. A better agreement is found at Wollongong with a negligible bias. The comparison also highlights the difficulty of retrieving total columns from IASI measurements over mountainous regions such as Jungfraujoch. A comparison of the retrieved columns with the global chemistry-transport model IMAGESv2 is also presented, showing good representation of the seasonal and interannual cycles over America, Australia, Asia, and Siberia. A global model underestimation of the distribution and a misrepresentation of the seasonal cycle over India are also found. A small positive trend in the IASI columns is observed over Australia, Amazonia, and India over the 2008–2014 period (from 0.7 to 1.5 % year−1), while a decrease of ∼ 0.8 % year−1 is measured over Siberia.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 9 ( 2018-09-10), p. 5125-5152
    Abstract: Abstract. This paper assesses the quality of IASI (Infrared Atmospheric Sounding Interferometer)/Metop-A (IASI-A) and IASI/Metop-B (IASI-B) ozone (O3) products (total and partial O3 columns) retrieved with the Fast Optimal Retrievals on Layers for IASI Ozone (FORLI-O3; v20151001) software for 9 years (2008–July 2017) through an extensive intercomparison and validation exercise using independent observations (satellite, ground-based and ozonesonde). Compared with the previous version of FORLI-O3 (v20140922), several improvements have been introduced in FORLI-O3 v20151001, including absorbance look-up tables recalculated to cover a larger spectral range, with additional numerical corrections. This leads to a change of ∼4 % in the total ozone column (TOC) product, which is mainly associated with a decrease in the retrieved O3 concentration in the middle stratosphere (above 30 hPa/25 km). IASI-A and IASI-B TOCs are consistent, with a global mean difference of less than 0.3 % for both daytime and nighttime measurements; IASI-A is slightly higher than IASI-B. A global difference of less than 2.4 % is found for the tropospheric (TROPO) O3 column product (IASI-A is lower than IASI-B), which is partly due to a temporary issue related to the IASI-A viewing angle in 2015. Our validation shows that IASI-A and IASI-B TOCs are consistent with GOME-2 (Global Ozone Monitoring Experiment-2), Dobson, Brewer, SAOZ (Système d'Analyse par Observation Zénithale) and FTIR (Fourier transform infrared) TOCs, with global mean differences in the range of 0.1 %–2 % depending on the instruments compared. The worst agreement with UV–vis retrieved TOC (satellite and ground) is found at the southern high latitudes. The IASI-A and ground-based TOC comparison for the period from 2008 to July 2017 shows the long-term stability of IASI-A, with insignificant or small negative drifts of 1 %–3 % decade−1. The comparison results of IASI-A and IASI-B against smoothed FTIR and ozonesonde partial O3 columns vary with altitude and latitude, with the maximum standard deviation being seen for the 300–150 hPa column (20 %–40 %) due to strong ozone variability and large total retrievals errors. Compared with ozonesonde data, the IASI-A and IASI-B O3 TROPO column (defined as the column between the surface and 300 hPa) is positively biased in the high latitudes (4 %–5 %) and negatively biased in the midlatitudes and tropics (11 %–13 % and 16 %–19 %, respectively). The IASI-A-to-ozonesonde TROPO comparison for the period from 2008 to 2016 shows a significant negative drift in the Northern Hemisphere of -8.6±3.4 % decade−1, which is also found in the IASI-A-to-FTIR TROPO comparison. When considering the period from 2011 to 2016, the drift value for the TROPO column decreases and becomes statistically insignificant. The observed negative drifts of the IASI-A TROPO O3 product (8 %–16 % decade−1) over the 2008–2017 period might be taken into consideration when deriving trends from this product and this time period.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 9, No. 9 ( 2016-09-06), p. 4327-4353
    Abstract: Abstract. This paper presents an extensive intercomparison and validation for the ozone (O3) product measured by the two Infrared Atmospheric Sounding Interferometers (IASIs) launched on board the MetOp-A and MetOp-B satellites in 2006 and in 2012 respectively. IASI O3 total columns and vertical profiles obtained from Fast Optimal Retrievals on Layers for IASI (FORLI) v20140922 software (running up until recently) are validated against independent observations during the period 2008–2014 on a global scale. On average for the period 2013–2014, IASI-A and IASI-B total ozone columns (TOCs) retrieved using FORLI are consistent, with IASI-B providing slightly lower values with a global difference of only 0.2 ± 0.8 %. The comparison between IASI-A and IASI-B O3 vertical profiles shows differences within ± 2 % over the entire altitude range. Global validation results for 7 years of IASI TOCs from FORLI against the Global Ozone Monitoring Experiment-2 (GOME-2) launched on board MetOp-A and Brewer–Dobson data show that, on average, IASI overestimates the ultraviolet (UV) data by 5–6 % with the largest differences found in the southern high latitudes. The comparison with UV–visible SAOZ (Système d'Analyse par Observation Zénithale) measurements shows a mean bias between IASI and SAOZ TOCs of 2–4 % in the midlatitudes and tropics and 7 % at the polar circle. Part of the discrepancies found at high latitudes can be attributed to the limited information content in the observations due to low brightness temperatures. The comparison with ozonesonde vertical profiles (limited to 30 km) shows that on average IASI with FORLI processing underestimates O3 by  ∼  5–15 % in the troposphere while it overestimates O3 by ∼  10–40 % in the stratosphere, depending on the latitude. The largest relative differences are found in the tropical tropopause region; this can be explained by the low O3 amounts leading to large relative errors. In this study, we also evaluate an updated version of FORLI-O3 retrieval software (v20151001), using look-up tables recalculated to cover a larger spectral range using the latest HITRAN spectroscopic database (HITRAN 2012) and implementing numerical corrections. The assessment of the new O3 product with the same set of observations as that used for the validation exercise shows a correction of ∼  4 % for the TOC positive bias when compared to the UV ground-based and satellite observations, bringing the overall global comparison to ∼  1–2 % on average. This improvement is mainly associated with a decrease in the retrieved O3 concentration in the middle stratosphere (above 30 hPa/25 km) as shown by the comparison with ozonesonde data.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 10, No. 9 ( 2017-09-15), p. 3359-3373
    Abstract: Abstract. In order to recognize the importance of ozone (O3) in the troposphere and lower stratosphere in the tropics, a DIAL (differential absorption lidar) tropospheric O3 lidar system (LIO3TUR) was developed and installed at the Université de la Réunion campus site (close to the sea) on Reunion Island (southern tropics) in 1998. From 1998 to 2010, it acquired 427 O3 profiles from the low to the upper troposphere and has been central to several studies. In 2012, the system was moved up to the new Maïdo Observatory facility (2160 m a.m.s.l. – metres above mean sea level) where it started operation in February 2013. The current system (LIO3T) configuration generates a 266 nm beam obtained with the fourth harmonic of a Nd:YAG laser sent into a Raman cell filled up with deuterium (using helium as buffer gas), generating the 289 and 316 nm beams to enable the use of the DIAL method for O3 profile measurements. The optimal range for the actual system is 6–19 km a.m.s.l., depending on the instrumental and atmospheric conditions. For a 1 h integration time, vertical resolution varies from 0.7 km at 6 km a.m.s.l. to 1.3 km at 19 km a.m.s.l., and mean uncertainty within the 6–19 km range is between 6 and 13 %. Comparisons with eight electrochemical concentration cell (ECC) sondes simultaneously launched from the Maïdo Observatory show good agreement between data sets with a 6.8 % mean absolute relative difference (D) between 6 and 17 km a.m.s.l. (LIO3T lower than ECC). Comparisons with 37 ECC sondes launched from the nearby Gillot site during the daytime in a ±24 h window around lidar shooting result in a 9.4 % D between 6 and 19 km a.m.s.l. (LIO3T lower than ECC). Comparisons with 11 ground-based Network for Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) spectrometer measurements acquired during the daytime in a ±24 h window around lidar shooting show good agreement between data sets with a D of 11.8 % for the 8.5–16 km partial column (LIO3T higher than FTIR), and comparisons with 39 simultaneous Infrared Atmospheric Sounding Interferometer (IASI) observations over Reunion Island show good agreement between data sets with a D of 11.3 % for the 6–16 km partial column (LIO3T higher than IASI). ECC, LIO3TUR and LIO3T O3 monthly climatologies all exhibit the same range of values and patterns. In particular, the Southern Hemisphere biomass burning seasonal enhancement and the ozonopause altitude decrease in late austral winter–spring, as well as the sign of deep convection bringing boundary layer O3-poor air masses up to the middle–upper troposphere in late austral summer, are clearly visible in all data sets.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 38, No. 19 ( 2011-10), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2011
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 387, No. 3 ( 2008-07-01), p. 1093-1098
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    URL: Issue
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2008
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2005
    In:  Chemical Physics Letters Vol. 414, No. 1-3 ( 2005-10), p. 193-197
    In: Chemical Physics Letters, Elsevier BV, Vol. 414, No. 1-3 ( 2005-10), p. 193-197
    Type of Medium: Online Resource
    ISSN: 0009-2614
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2005
    detail.hit.zdb_id: 1466293-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Copernicus GmbH ; 2018
    In:  Atmospheric Chemistry and Physics Vol. 18, No. 9 ( 2018-05-16), p. 6867-6885
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 9 ( 2018-05-16), p. 6867-6885
    Abstract: Abstract. In this study, we describe the recent changes in the tropospheric ozone (O3) columns measured by the Infrared Atmospheric Sounding Interferometer (IASI), onboard the Metop satellite, during the first 9 years of operation (January 2008 to May 2017). Using appropriate multivariate regression methods, we differentiate significant linear trends from other sources of O3 variations captured by IASI. The geographical patterns of the adjusted O3 trends are provided and discussed on the global scale. Given the large contribution of the natural variability in comparison with that of the trend (25–85 % vs. 15–50 %, respectively) to the total O3 variations, we estimate that additional years of IASI measurements are generally required to detect the estimated O3 trends with high precision. Globally, additional 6 months to 6 years of measurements, depending on the regions and the seasons, are needed to detect a trend of |5| DU decade−1. An exception is interestingly found during summer at mid- and high latitudes of the Northern Hemisphere (NH; ∼ 40 to ∼ 75∘ N), where the large absolute fitted trend values (∼ |0.5| DU yr−1 on average) combined with the small model residuals (∼ 10 %) allow for detection of a band-like pattern of significant negative trends. Despite no consensus in terms of tropospheric O3 trends having been reached from the available independent datasets (UV or IR satellites, O3 sondes, aircrafts, ground-based measurements, etc.) for the reasons that are discussed in the text, this finding is consistent with the reported decrease in O3 precursor emissions in recent years, especially in Europe and USA. The influence of continental pollution on that latitudinal band is further investigated and supported by the analysis of the O3–CO relationship (in terms of correlation coefficient, regression slope and covariance) that we found to be the strongest at northern midlatitudes in summer.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...